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Abstract: Factorization Using the Infrastructure of Binary
Quadratic Form Class Groups

This research has analyzed algorithms for integer factorization based on continued fractions
and binary quadratic forms, focusing on a runtime analysis of the algorithm and proving
several valuable results about continued fractions.

Factorization is important for both practical and theoretical reasons. In secure digital
communication, the RSA public key cryptosystem is often used. The security of this cryp-
tosystem depends on the difficulty of factoring large integers. In number theory, factoring is
of fundamental importance.

In 1975, Daniel Shanks used class group infrastructure to modify the Morrison-Brillhart
algorithm and develop Square Forms Factorization, but he never published his work on this
algorithm or provided a proof that it works. This research began by analyzing Square Forms
Factorization, formalizing and proving the premises on which the algorithm is based and
then analyzed two variations: one that uses a test of direction to perform a binary search
and one that uses composition to divide the search between parallel processors.

Shanks’ Square Forms Factorization, including a concept he called Fast Return, has been
implemented in C and Magma and some experimental runtime analysis has been done. A
parallel version in C has been implemented and tested.
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1 Introduction

The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most
important and useful in arithmetic. It has engaged the industry and wisdom of
ancient and modern geometers ... the dignity of the science itself seems to require
that every possible means be explored for the solution of a problem so elegant
and so celebrated.

C. F. Gauss [7]

Factorization is important for both practical and theoretical reasons. In secure digital
communication, the RSA public key cryptosystem is often used. The security of this cryp-
tosystem depends on the difficulty of factoring large integers. In number theory, factoring is
of fundamental importance.

The algorithms for factoring larger and larger integers quickly have developed significantly
over the years. There are many ways of doing this, ranging from trial division to the number
field sieve. This research focuses on a specific underdeveloped algorithm introduced by Daniel
Shank 1975, Square Forms Factorization, but also analyzes two new variations, one due to
a conjecture by Pomerance and one introduced by this author. The overall goal of this
research was to analyze algorithms for integer factorization based on the use of continued
fractions and quadratic forms, focusing on proving mathematical results in these areas and
determining runtime. We proposed several preliminary sub-goals to this end:

1. Analyze the conditions for which Square Forms Factorization provides a factorization.

2. Analyze the connection between continued fractions and quadratic forms and provide
related proofs.

3. Analyze a test of direction.

4. Produce a computer implementation of these algorithms.

The first sub-goal was to analyze the conditions for which Square Forms Factorization
provides a factorization. This information is important to cryptology, as the security of
some public key cryptosystems is dependent on the difficulty of factorization. The conditions
for which the algorithms must provide a factorization have been determined. However, a
sufficient set of conditions for which the algorithms will not work has not yet been determined.
In addition to the original goal, this research is currently analyzing which numbers Square
Forms Factorization may factor significantly faster or slower than others, which is just as
important since numbers that factor extremely slowly are almost as secure as numbers that
the algorithm doesn’t factor at all. It is possible to determine sufficient conditions for which a
number factors quickly but necessary conditions remain elusive. Specifically, if N = pq where
the ratio p/q is close to a ratio of perfect squares, N will factor unusually fast. Conjecture
2 of §4 explains this in more detail.
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The second sub-goal was to analyze the connection between continued fractions and
quadratic forms, specifically intending to analyze the work done by Shanks. This research
has taken significantly longer than planned for in the original timeline. Much of the existing
information on these theories was scattered and disorganized, and many of the papers either
lacked proofs or contained errors, so it was valuable to organize this information into a form
that could be useful. The most important achievement in this was the development and
proof of a formula relating infrastructure distance with composition of quadratic forms.

The third sub-goal was to analyze a test of direction useful to a new algorithm being
developed. Very little progress has been made on this so far. Although the other proofs on
quadratic forms and continued fractions have provided significant insight, they have provided
very little insight into the test of direction.

The fourth of the original sub-goals was to produce a computer implementation of these
algorithms. Shanks’ Square Forms Factorization has been implemented in both C and
Magma, including libraries of functions concerning the operations essential to quadratic
forms and continued fractions. This source code will be made available in a distributable
form. The Magma version is included in Appendix B.

Concerning runtime, Jason Gower [8] has recently analyzed the runtime of SQUFOF for
his Ph.D. thesis at Purdue University, so this investigation will not continue further in that
direction. Included in this was an analysis of multipliers, a concept that will be used in these
implementations. However, it has been conjectured by Pomerance that as SQUFOF is easy
to parallelize, a parallel implementation may be competitive, so a new goal has been set of
analyzing the parallel implementation of SQUFOF.

A parallel version of SQUFOF has been developed and has been implemented and tested
in C. This code is included in Appendix C. No comparison of the runtime of this algorithm
has been made yet.
§2 provides some background to the problem of factorization, basic number theory, and

some of the tools related to Square Forms Factorization. §3 describes how Square Forms
Factorization developed from the existing theory. §4 describes Square Forms Factorization,
including several variations of the algorithm, and describes some significance the algorithm
may have for cryptology.

2 Background

The Problem and its Importance

There are several different kinds of factorization; this research will focus on integer factoriza-
tion. Consider an integer N . Factorization is the process of finding integers p and q greater
than 1 such that N = pq. Complete factorization would require repeating this process for
both p and q until all of the remaining factors are prime. However, if an algorithm can be
developed to quickly factor N into p and q, the same algorithm can be used over again on p
and q. For example, it is easy to see that 105 = 5 · 21 and then repeat to factor 21. From
here, you would see that since 21 = 3 · 7, 105 = 5 · 3 · 7. Although in this simple case, the
complete factorization is easy to find, this task becomes much harder for large numbers.
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Number Theoretic Applications

In number theory, the factors of a number dictate many of the characteristics of the number.
For example, Euler’s φ function, which tells how many numbers less than N are relatively
prime to N , can be directly calculated from the complete factorization. For an integer that
is the product of distinct odd primes, φ(N) may be calculated by multiplying each of the
factors minus 1.

Example 1 105 = 5 · 3 · 7. Therefore φ(105) = (5− 1)(3− 1)(7− 1) = 48, so there are 48
integers less than 105 that are relatively prime to 105.

Also, determining whether a number is a quadratic residue (i.e. the square of another number
modulo N), can be determined directly using Gauss’s Quadratic Reciprocity Law if the
complete factorization of N is known.

Example 2 192 = 361 = 46+3·105, so that 46 is a quadratic residue modulo 105 with square
root 19. One would represent this as 192 ≡ 46 (mod 105). With the complete factorization,
we can use Guass’s Quadratic Reciprocity Law to analyze 46 modulo 3,5, and 7 to determine
whether or not 46 is a quadratic residue modulo 105 without actually having to find its square
root first [7].

Therefore, factoring large numbers has been a focus of research for a variety of theoretical
reasons.

Cryptographic Applications

One practical application of factorization is public key cryptography. The idea of public key
cryptography is that it is possible to keep a communication secret without having to keep the
key secret. The message is encrypted by one key, which is made public, and is decrypted by
another key, which is kept secret. In the most prevalent public key encryption system, RSA1

[24], the cryptographer chooses a number that is the product of two large prime2 numbers p
and q: N = pq. Then an exponent e is chosen such that e is relatively prime to (p−1)(q−1).
Although there are several variations, in the normal public key version, N and e are made
public. The user of the RSA system then privately calculates d, the inverse of e modulo
(p− 1)(q− 1). Anyone is able to encrypt something to him by raising blocks of the message
to the power e, modulo N: c ≡ me (mod N), where m is the original message and c is the
encrypted message. Then, the recipient is able to decrypt by evaluating m ≡ cd (mod N)
[24].

Example 3
p = 4327, q = 1009, N = pq = 4365943

1RSA is named after Rivest, Shamir, and Adleman. It was earlier developed by Clifford Cooks of GCHQ,
but this was only recently declassified [6].

2Usually, these are just numbers that pass several primality tests and thus have a high probability of
being prime, called pseudo-primes. Very rarely, one of them will not be, but this is rare enough to not cause
significant problems.
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e = 2005

and from this the cryptographer would use p,q and e to calculate d = 865597. He would make
N and e public. Suppose someone wants to send him the message 809.

The sender would evaluate 8092005 (mod N) as 1591327. This would be sent over the
internet.

The receiving computer would then evaluate 1591327865597 (mod N) as 809. Since this is
the only computer with access to d, anyone else intercepting the message would have great
difficulty in determining the message

Another application of public key cryptography is for signatures. If the sender uses his
private key to encrypt a message, the reciever may use the public key to decrypt the message
and be certain of who the message originated from and that noone along the way has modified
it. Often this is combined with a second layer of encryption to prevent anyone else from also
being able to use the public key to read the message.

As long as someone intercepting a message is unable to factor N , it is usually impossible
to obtain d, so that the message cannot be broken. The security of RSA and its variations
depends highly on whether or not N can be factored [31]. Although extremely fast factor-
ization would be a threat to these systems, the advances in number theory produced by
faster factorization would likely provide a number of alternative secure systems. Also, in
addition to the potential for alternative secure systems, there is the strong possibility that
fast factorization algorithms will work better for some numbers than others. If there are
classes of numbers that a faster factorization algorithm does not work on, this would en-
able designers of the algorithm to increase their security by relying more on these numbers.
Regardless of whether or not the algorithm works for all numbers or provides alternative
systems, for security purposes it is necessary to understand the strengths and weaknesses of
the algorithm.

Runtime Analysis

Up to this point we have referred to the speed of factorization in general terms, but there are
several different ways to classify the speed of an algorithm. Let N be the number to factor.
Let n be the number of bits in N , n = log2N . An algorithm’s run time is called exponential
if it increases exponentially with the size of the input, in this case n. Linear refers to an
algorithm where the time increases proportionally to the number of bits3. Polynomial refers
to an algorithm for which the time required is some polynomial function of n. Thus, linear
time is a special case of polynomial time. There are some algorithms that fall in between
polynomial and exponential time and are referred to as sub-exponential.

Note that different algorithms may be faster for different sizes of numbers or even for
different systems. This is why the runtime is analyzed in terms of growth. For small values
of n, linear and exponential may be fairly close or linear may even be faster, but the runtime

3Since n = log2 N , so that such a runtime is logarithmic in N , this is often referred to as logarithmic,
resulting in a certain amount of confusion. Note that both ways of expressing runtime will be used in this
paper.
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of an exponential algorithm will grow faster with the size of n, so that for sufficiently large
n, an exponential algorithm will be slower than a sub-exponential, which will be faster than
a polynomial, which will be faster than a linear.

The runtimes for sub-exponential algorithms are described by complicated formulas. De-
fine

L(α, c) = exp(cnα(log n)1−α))

If α = 1, this is an exponential algorithm. If α = 0, this is a polynomial algorithm. For
values of α in between 0 and 1, the algorithms are sub-exponential.

In terms of asymptotic runtime, the best general purpose factorization algorithm is the
general number field sieve, with a runtime4 of L(1/3, 4

32/3 + o(1)) [14]. Two other algorithms
are currently in common use, the elliptic curve method, which has a runtime of L(1/2, 1+o(1))
[16] and the multiple polynomial quadratic sieve, which has a runtime of L(1/2, 1) [20].
Although each of these algorithms is slower on average, they are each faster for some types
of integers, so that in combination they tend to be faster than the number field sieve.

Another less commonly considered characteristic of a factorization algorithm is the effi-
ciency with which it can use multiple processors working simultaneously. The current trend
in ultra-fast computing is to use a large number of inexpensive processors instead of a single
expensive processor. Given this trend, it is important that a good algorithm be able to use
a multiple processor system efficiently. Dividing a single task between multiple processors is
called parallelization. With perfect efficiency, factoring a number with 10 processors should
take on average one tenth the time requred for factorization on a single processor, but no
algorithm can ever quite attain perfect efficiency.

Number Theory

Mathematics is the Queen of the sciences, and arithmetic the Queen of mathe-
matics.

C. F. Gauss [25]

This section provides a quick overview of basic number theory concepts and notation
that will be used throughout this report. Those already familiar with number theory are
welcome to skip this section, as none of this is original and may be found in any standard
number theory text [9].

Number theory analyzes sets of numbers. If an element e is in a set S, this is written
e ∈ S. If an element e is not in a set S, this is written e 6∈ S. If all the elements in set S1 are
in set S2, then S1 is contained in set S2 and this is written S1 ⊂ S2. If S1 ⊂ S2 and S2 ⊂ S1,
then S1 = S2.

The set of all real numbers is denoted R. Although this set will be important, it is
primarily several special subsets of the real numbers that this research will focus on:

4The expression o(1) is little o notation. It converges to 0 as n goes to infinity. An understanding of little
o notation is not important for understanding this report.
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The first subset of the real numbers is the set of integers, represented as Z.

Z = {...− 3,−2,−1, 0, 1, 2, 3...}.

The natural numbers are the integers ≥ 1. The operations on the integers are the standard
addition and multiplication. Addition has the usual four basic properties: associativity,
commutativity, identity, and inverses.

Multiplication has three basic properties: associativity, commutativity, and identity.
One other property, ditributivity, involves both addition and multiplication:

a · (b+ c) = ab+ ac.
There are several other relations that are important in Z. A natural number a divides

an integer b if there exists an integer k such that b = ka and this is written a | b. If a does
not divide b, this is written a - b. A natural number > 1 is prime if it may only be divided
by itself and 1. There are several basic properties of this relation:

If a | b and b | a, then a = b.
If a | b and a | c, then a | (b+ c).
If a | b, then a | bc.
If a is prime and a | bc, then a | b or a | c.

If for some integer n and a prime p, pn | b, but pn+1 - b, this is written pn ‖ b.
c is the greatest common divisor of a and b if c > 0, c | a, c | b, and for any integer d such

that d | a and d | b, d | c. This is written c = gcd(a, b) or sometimes (although not in this
report) as merely (a, b).

Two integers a and b are relatively prime if gcd(a, b) = 1, that is, if a and b have no factor
in common.

If p,m, n are integers with p prime such that pm ‖ a and pn ‖ b, then pmin(m,n) ‖
gcd(a, b).

If c = gcd(a, b), there exist integers x, y ∈ Z such that ax+ by = c. gcd(a, b), along with
these two integers, may be efficiently calculated using Euclid’s extended algorithm.

c is the least common multiple of a and b if c > 0, a | c, b | c, and for any integer d such
that a | d and b | d, c | d. This is written c = lcm(a, b) or sometimes merely as {a, b}. If
p,m, n are integers with p prime such that pm ‖ a and pn ‖ b, then pmax(m,n) ‖ lcm(a, b).

The gcd and lcm are related by the formula gcd(a, b) · lcm(a, b) = ab.
If c | (a− b), then we say that a is congruent to b modulo c, written a ≡ b (mod c). This

relation has several basic properties:
If a ≡ b (mod n), then b ≡ a (mod n).
If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
If a ≡ b (mod n) and c ≡ d (mod n), then a + b ≡ c + d (mod n) and ac ≡ bd

(mod n).
By using Euclid’s extended algorithm to compute greatest common divisors, for a rela-

tively prime to b it is possible to calculate a−1 (mod b). Thus, division modulo b is defined
as reducing to least terms and then multiplying by the inverse.

One important type of number is a quadratic residue. The integer a is a quadratic residue
of integer base b if there exists some integer x such that x2 ≡ a (mod b). For example, 2 is
a quadratic residue of 7 because 32 = 9 ≡ 2 (mod 7). The symbol used is

(
a
b

)
.

(
a
b

)
= 1 if

10



x2 ≡ a (mod b) has a solution, −1 if it does not, and 0 if a and b are not relatively prime. If
a is a quadratic residue of b and a is a quadratic residue of c and b and c are relatively prime,
then a is a quadratic residue of bc. Gauss’s Quadratic Reciprocity Law provides a fast way
of determining quadratic residues modulo a base whose prime factorization is known:

Theorem 1 For p and q distinct primes:

(
p

q

)
(
q

p
) = (−1)(p−1)(q−1)/4

(
2

p

)
= (−1)(p2−1)/8

(−1

p

)
= (−1)(p−1)/2

There are many other well-known properties concerning congruences. For example, “Fer-
mat’s little theorem”: for p prime and a an integer if p - a, then ap−1 ≡ 1 (mod p). This
is often used to test whether not an integer N is prime. (If for some a < N , aN−1 6≡ 1
(mod N), then N is not prime. However, there are infinitely many composite numbers that
will appear prime for any a such that gcd(a,N) = 1, so the converse is not necessarily true
[1].)

In Z, inverses are not defined for multiplication. However, this question brings us to the
set of rational numbers, represented as Q.

Q = {a/b : a, b ∈ Z, b 6= 0}
All of the properties for addition and multiplication in Z still apply, in addition to one

more:
If a ∈ Q and a 6= 0, then there exists a unique integer b such that a · b = 1. This

is written as a−1 or 1/a.
Let α denote a real or complex number not belonging to Q. Denote the set of all finite

linear combinations with integer coefficients of all the non-negative powers of α by,

Z[α] = {a0 + a1α + a2α
2 + a3α

3 + ... : ai ∈ Z}.
For example, if α =

√
2, then Z[

√
2] contains 5+3

√
2 and 4−2

√
2, but does not contain 4√

2
.

Alternately, the new set could be the set of all linear combinations of all the powers of
α. That is,

Q(α) = {...a−2α
−2 + a−1α

−1 + a0 + a1α+ a2α
2 + ... : ai ∈ Q}

For example, Q(
√

2) contains both 3 +
√

2 and 4 + 2√
2
, but does not contain 1

1+
√

2
.

For an element ζ in either of the sets Z[
√
N ] and Q(

√
N), ζ refers to the conjugate of ζ,

which is found by changing the sign of the algrebraic part. For example, if ζ = 1 +
√

3, then
ζ = 1−√3.

The norm of ζ is N (ζ) = ζζ.

11



Four Closely Related Tools

This section introduces four areas of mathematics that this research has focused on: con-
tinued fractions, quadratic forms, ideals, and lattices. These areas are closely related and
therefore have the same property of being periodic. See Appendix A for a more detailed
analysis of each of these topics, along with related proofs and an analysis of their connec-
tions.

1. A continued fraction is a tool originally used for rational approximation. Given a
number α, the goal is to represent α in the form

α = b0 +
1

b1 + 1
b2+...

for integers bi. This is often abbreviated as [b0, b1, b2, ...]. The expressions found by
truncating this, b0, [b0, b1], [b0, b1, b2], ... are called the convergents. These simplify down
to rational numbers An/Bn.

The sequence of bi’s is found by the recursive formulas

x0 = α, b0 = bx0c (1)

∀i ≥ 1 xi =
1

xi−1 − bi−1

, bi = bxic (2)

Note that this formula is derived by solving the equation xi−1 = bi−1 + 1
xi

for xi. bxc
refers to the floor of x, the greatest integer less than or equal to x.

If x0 =
√
N for N a non-square integer (that is, not the square of another integer), then

this sequence may be calculated efficiently. In paticular, each xi reduces to the form√
N+P
Q

with P and Q integers. The integer P in the numerator is called the residue.

The denominator Q is called a pseudo-square. There are formulas to calculate these
recursively, after the first several steps, without doing arithmetic on any integer larger
than

√
N .

The rational approximation produced may also be evaluated recursively, so that the
integers Ai and Bi such that Ai/Bi = [b0, b1, ...bi] may be calculated efficiently. For
factorization, the relation

A2
i−1 ≡ (−1)iQi (mod N) (3)

has been important for several algorithms. This equation also explains the name
‘pseudo-square’.

Take the following example:

12



Example 4

x0 =
√

41, b0 = 6
√

41 = 6 + 1
x1

x1 = 1
x0−b0

= 1√
41−6

=
√

41+6
5

, b1 = 2
√

41 = 6 + 1
2+ 1

x2

x2 = 1
x1−b1

= 5√
41−4

=
√

41+4
5

, b2 = 2
√

41 = 6 + 1
2+ 1

2+ 1
x3

x3 = 1
x2−b2

= 5√
41−6

=
√

41+6
1

, b3 = 12
√

41 = 6 + 1
2+ 1

2+ 1

12+ 1
x4

At this point it is evident that x4 = x1 and the sequence is periodic. This always occurs
with the continued fraction expansion for

√
N for N non-square. The length of this

period is closely related to several deep number theory ideas involving the class number
and the regulator.

2. A binary quadratic form is a polynomial of the form F (x, y) = ax2 + bxy + cy2, for
a, b, c ∈ Z. (Often this is abbreviated5 as (a, b, c)).

Two quadratic forms are equivalent if they have the same range, the set of possible
values for F (x, y) for integer values of x and y, written F1 ∼ F2. §4 of Appendix A gives
a more precise description of equivalence. The surprising fact is that two quadratic
forms are equivalent if and only if they correspond to terms from the same continued
fraction expansion (Theorem 6 in Appendix A), so that the cycle formed by the xi’s
used to compute continued fractions corresponds to a cycle of equivalent quadratic
forms.

The primary operation on quadratic forms is composition. This operation is defined in
detail in Appendix A, Proposition 2. The composition of two binary quadratic forms
is another binary quadratic form, written with the symbol (∗). Note that although
the original definition of this operation is related to multiplication, this is an operation
that is quite distinct from multiplication, as the product of two binary quadratic forms
is no longer a binary quadratic form.

Equivalence and composition are closely related. Specifically, if F1 ∼ F2, then F1 ∗G ∼
F2 ∗ G. The cycles of equivalent forms are the elements of the class group, which has
been studied extensively.

3. A lattice is the set of all finite linear combinations (with integer coefficients) of a
generating set that contains a basis for the entire space the lattice is contained in. For
this research, the elements of a lattice are vectors inQ(

√
N)×Q(

√
N). If α1, α2, ..., αk ∈

Q(
√
N)×Q(

√
N) are vectors, then

5As b is usually even, many writings on quadratic forms represent this as the triplet (a, b/2, c), so that
−14x2+10xy+5y2 would be represented (−14, 5, 5). This report does not take out this factor of 2. Although
this will be clear throughout this report, please observe the potential for confusion on this “annoying little
2 [2]” when comparing different sources on quadratic forms.
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[α1, α2, ..., αk] =

{
k∑

i=1

niαi : ni ∈ Z
}

is a lattice.

The notation is often abused slightly, so that the vector 〈ζ, ζ〉 is represented by just ζ.

There are several properties of lattices that are important for this research.

Definition 1 For a vector v = 〈v1, v2〉, the normed body of v, R(v) is the set

R(v) = {〈x1, x2〉 : x1, x2 ∈ R, |x1| < |v1|, |x2| < |v2|}
Abusing notation again, denote R(ξ) = R(〈ξ, ξ〉).
A number ξ (or actually the corresponding vector) is a minimum of L ifR(ξ)∩L = {0},
where 0 is the vector 〈0, 0〉. Figure 1 provides an example of this.

A lattice L is reduced if 1 ∈ L and 1 is a minimum.

6

-

ru
rw

r
r

r
r

r
r

r
rv

r

Figure 1: A Lattice with Minima

The image above demonstrates minima of a lattice. The lattice is the set of points.
Each of the points u, v, and w are minima of this lattice, since there are no points of
the lattice inside their respective normed bodies (the rectangles) except the origin.

Another important characteristic of minima is adjacency. If 〈x1, y1〉 and 〈x2, y2〉 are
minima with |x1| > |x2| and |y1| < |y2|, these two minima are adjacent if there does
not exist another minima 〈x3, y3〉 such that |x2| < |x3| < |x1| and |y1| < |y3| < |y2|. In
Figure 1, u and v are adjacent minima and v and w are adjacent minima.

The important connection between lattices and continued fractions is a method devel-
oped by Voronoi for finding a chain of adjacent minima for a lattice (and a chain of
other reduced lattices). This process matches the continued fraction algorithm exactly,
a property that implies that the distance derived from lattices also applies to continued
fractions and quadratic forms.
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4. An ideal is a common algebra concept that is used in a variety of contexts. For a ring
S , a set I is an ideal of S if

I ⊂ S.

If a, b ∈ I, then a+ b ∈ I and a− b ∈ I.
If a ∈ I and s ∈ S, then a · s ∈ I.

A classic example is the set of all even integers, 2Z, within the set Z of all integers.
The sum of two even integers is still an even integer and the product of an even integer
with any integer is an even integer.

This analysis focuses on ideals of Z[
√
N ], for N a non-square positive integer. Describ-

ing these ideals will again require the notation for the lattice generated by a set. With
this notation the ideals of Z[

√
N ] are of the form [Q, s

√
N+P ], for some integers Q, s, P

and a set I = [Q, s
√
N + P ] is an ideal of Z[

√
N ] if and only if sQ | N (s

√
N + P ),

s | Q, and s | P (Appendix A, Lemma 8). An ideal is primitive if s = 1.

The multiplication of ideals is important to many fields. For the ideals I = [Q,
√
N+P ]

and J = [Q′,
√
N + P ′],

I · J = [QQ′, Q
√
N +QP ′, Q′

√
N +Q′P, (

√
N + P )(

√
N + P )]

This may then be simplified to reduce it to an ideal of the form s[q,
√
N + p], where s,

q, and p may be calculated efficiently.

The quadratic form (of discriminant ∆ ≡ 0 (mod 4)) F (x, y) = Ax2 + Bxy + Cy2

corresponds to the ideal


A,

√(
B

2

)2

− AC +
B

2




and similarly the ideal [Q,
√
N + P ] corresponds to the quadratic form

F (x, y) = Qx2 + 2Pxy +

(
P 2 −N
Q

)
y2

Note that ∆ = 4N .

The value of ideals is that the equations defining multiplication of ideals correspond ex-
actly to the equation defining composisition of quadratic forms, providing a connection
between quadratic forms and lattices.

Appendix A describes the one to one correspondence between the elements of these
different sets. For this paper, it is sufficient to understand that these maps do exist, that
is, each term in the continued fraction expansion is paired with exactly one quadratic form,
exactly one lattice, and exactly one ideal and given any one, any of these four expressions
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may be calculated immediately. The indices derived from continued fractions are typically
also used for the related quadratic forms, ideals, and lattices.

As all of these tools are closely related, they all have the property of being periodic, as
demonstrated by Example 4. The length of this period is equal to the regulator of the class
group and is related to many other number theory concepts ([15], [27]).

If the continued fraction expansion is started with something other than x0 =
√
N , the

result may be a sequence that is completely disjoint from the principal cycle (the sequence

that begins with x0 =
√
N). Most of these cycles are symmetric6. Lemma 4 and Theorem

4 provide a thorough definition and analysis of these symmetries, but the concept can be
readily understood from several examples:

Example 5 In Example 4, the period of the denominators was 1, 5, 5, 1, ..., so that 1 and 5
are both symmetry points. If x0 =

√
115, then the period of the denominators is

1, 15, 6, 11, 9, 10, 9, 11, 6, 15, 1, ...

so that the symmetry points are 1 and 10.

If instead x0 =
√

115+9
2

, then the period of the denominators is

2, 17, 3, 5, 3, 17, 2, ...

This is a different cycle for the class group for N = 115.

These are the cycles that are important for factorization.
The square of a quadratic form in the principal cycle is also in the princpal cycle and

Theorem 8 shows that the square of a form in any ambiguous cycle is also in the principle
cycle.

3 History: From Morrison and Brillhart to Present

In 1931, D. H. Lehmer and R. E. Powers [13] introduced one simple and fairly intuitive
algorithm for using continued fractions for factorization. Unfortunately, as it had the frus-
trating tendancy to fail a few times before succeeding, it was dropped. However, as better
computing capabilities became available, John Brillhart began to consider that although
this algorithm was cumbersome for smaller numbers, it might have an advantage for larger
numbers. In 1970, Morrison and Brillhart implemented CFRAC, as it became known, and
tried to factor a 39 digit number [19]. The entire algorithm is a bit more complicated, but
here is a description sufficient for our purposes.

If the equation

x2 ≡ y2 (mod N) (4)

can be solved such that

6The non-symmetric cycles are not analyzed in this paper.
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x 6≡ ±y (mod N), (5)

then gcd(x − y,N) provides a nontrivial factor of N . Choosing a value for x and then
looking for a value for y that satisfies equations (4) and (5) is not computationally effective

for large N . Fermat, the first to employ this concept, tested values of x greater than
√
N to

find a value such that x2 (mod N) was already a perfect square. However, these numbers
get large quickly. Continued fractions provide another approach to achieving this and since
0 < Qi < 2

√
N , the chances of finding a perfect square are greatly improved. From (3),

A2
i−1 ≡ (−1)iQi (mod N). If for some i, Q2i is a perfect square then this provides a solution

to (4) and it only remains to check whether or not gcd(x+ y,N) or gcd(x− y,N) provide a
nontrivial factor of N . However, there are not very many perfect squares in the continued
fraction expansion so Morrison and Brillhart [19] used products to obtain squares. For
example, for N = 1333, the continued fraction expansion provides 732 ≡ −3 (mod N) and
17892 ≡ −12 (mod N). From this, (73·1789)2 ≡ (−3)(−12) = 62 (mod N), quickly yielding
gcd(73 · 1789− 6, 1333) = 43, so that 1333 = 31 · 43.

There are two problems with this algorithm. First, it requires the calculation of the
Ai’s, which are of the same size as N , after reduction modulo N , while the rest of the
algorithm only requires arithmetic on numbers of size

√
N . Second, after going through a

nontrivial amount of computation to find a relation that solves (4), not all of these result in
a factorization. I provide one example:

Example 6 In the continued fraction for
√

1333, Q6 = 9 = 32 and A5 = 10661, so that
106612 ≡ 32 (mod 1333). Unfortunately 10661 ≡ −3 (mod 1333), so this square does not
result in a nontrivial factor of 1333.

In 1975, Daniel Shanks developed several very interesting algorithms for factorization
([26],[29]) based on an understanding of quadratic forms and the class group infrastructure.
First he developed an improvement to the Morrison-Brillhart algorithm. Roughly speaking,
rather then saving the Ai’s, he was able to use composition of quadratic forms to combine
numbers to produce squares and then use the “infrastructure” to use those squares to find
a factorization. In addition, he developed from the concept of infrastructure a system of
predicting whether or not any given square would provide a nontrivial factor. Unfortunately,
this didn’t save very much time and was a much more complicated algorithm than the
Morrison-Brillhart algorithm.

From here the development of the algorithm was prompted by the number 260+230−1. It
failed a Fermat primality test7, but when Morrison and Brillhart tried to factor it, it failed 114
times. Therefore, they stopped, multiplied it by some small constant and tried again. This
time it worked on the first try, but they wanted to know why it had failed so many times.
So they asked Shanks to analyze it. Unfortunately (or fortunately in hindsight), Shanks
only had an HP-65 available and he couldn’t fit his entire algorithm into it. Therefore, he
discarded all the work of combining numbers to form squares and just cycled through until

7The Fermat primality test is based on Fermat’s classical result that for p prime, ap ≡ a (mod p) [9].
Equivalently, if aN 6≡ a (mod N) for some integer a, then N isn’t prime.
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he found one already there. The code for this was much shorter, and as it turned out the
algorithm, which became known as Square Forms Factorization or SQUFOF, was actually
significantly faster.

Although Shanks did not publish his work, it has been picked up by several people.
Williams [32], in 1985, provides a description of SQUFOF based on ideals and lattices.
Riesel [23], in 1985, gives a good continued fraction based description of SQUFOF. Buell [2],
in 1989, provides a thorough analysis of quadratic forms and gives a description of SQUFOF.
No complete explanation of why SQUFOF works has been published.

Shanks died in 1996 leaving several papers on Square Forms Factorization in unpublished
and incomplete form [33]. These were incomplete and contained very few proofs, although
Shanks suggests that he may have had proofs for some of what he wrote. This author
has obtained a copy of these papers, has transcribed them, and has formalized the proofs
necessary to explain why Square Forms Factorization works. See Appendix A for the details
of this analysis.

Recently, a runtime analysis of SQUFOF, among other things, has been completed by
Jason Gower in [8], proving that the runtime is O( 4

√
N) = L(1, 1/4).

4 Square Forms Factorization

Original Algorithm and Variations

The continued fraction cycles contain symmetry points that potentially provide a factoriiza-
tion for N . The goal of SQUFOF and any related algorithms is to search for these symmetry
points. SQUFOF, described in Figure 2, provides a fairly simple way of achieving this. The
basic version searchs the sequence in order until it finds a perfect square on an even index.
Then it takes the square root of the denominator and the conjate of the numerator and con-
tinues cycling until it finds the symmetry point, which is indicated by a repeated numerator.
At this point Pi at this point must then have a factor in common with the Qi+1. Since
N = P 2

i +QiQi+1, this repeated numerator provides the factor for N .

Example 7 Let N be 1353:

x0 =
√

1353 b0 = 36

x1 =
1√

1353− 36
=

√
1353 + 36

57
= 1 +

√
1353− 21

57

x2 =
57√

1353− 21
=

√
1353 + 21

16
= 3 +

√
1353− 27

16
(6)

The second fraction in each step is found by rationalizing. At each step, the integers
taken out are bi and the remaining fractions are between 0 and 1. After subtracting bi the
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Given N to be factored:

x0 ←
√
N b0 ← bx0c

while Qi 6= perfect square
Apply equation(2) twice

Reduce xi to the form
√

N−Pi

Qi

x′0 ←
√

N+Pi√
Qi

while Pi 6= Pi−1

Apply equation (2) and reduce

gcd(N,Pi), the greatest common
divisor, is a nontrivial factor.

Figure 2: SQUFOF without Composition

remaining fraction is inverted to find xi+1. As a point of reference, we have approximated
so far that

√
1353 ≈ 36 + 1

1+ 1
3

. SQUFOF stops here because 16 is a perfect square. Taking

the conjugate of the numerator and the square root of the denominator, we obtain:

x′0 =

√
1353 + 27

4
= 15 +

√
1353− 33

4

x′1 =
4√

1353− 33
=

√
1353 + 33

66
= 1 +

√
1353− 33

66
(7)

Here, since the residue 33 is repeated, we quickly find that 33 is a factor of 1353. 1353 =
33 · 41 = 3 · 11 · 41.

Shanks developed Square Forms Factorization, or SQUFOF, based on a concept called
the infrastructure of the class group. This refers to the relationship between distance and
composition. Define the distance from Fm to Fn by:

D(Fm, Fn) = log(
n∏

k=m+1

xk) (8)

where xk are the corresponding terms in the continued fraction expansion. Since distanc
is the log of the product of the terms in between, roughly speaking, distance is nearly
proportional to the difference in indices. Then the location of the form resulting from the
composition of two quadratic forms is controlled by:

D(F1 ∗G1, Fn ∗Gm) = D(F1, Fn) +D(G1, Gn) + ζ (9)
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where ζ is small8. This formula is proven in the arguments leading up to Theorem 11.
By equation (9), the distance from a symmetry point is doubled when a quadratic form

is squared, so that the square root of a quadratic form is half the distance from a symmetry
point as the original quadratic form. The change made to the continued fraction expansion
upon the occurance of a perfect square corresponds exactly to taking the square root of a
quadratic form and reversing its direction, so that in the second phase (after the change
in sequence is made) the algorithm is going backwards on a different cycle. The distance
covered from making this change until obtaining the symmetry point will be one half the
distance covered before finding this square. Since this distance may be known as well as
necessary, it is possibly to use some of the quadratic forms found along the way to shorten
this return.

Formally, here is the version of Square Forms Factorization that Shanks intended:

Given N to be factored:

Q0 ← 1, P0 ← b
√
Nc, Q1 ← N − P 2

0

r ← b√Nc
while Qi 6= perfect square for some i even

bi ←
⌊

r+Pi−1

Qi

⌋

Pi ← biQi − Pi−1

Qi+1 ← Qi−1 + bi(Pi−1 − Pi)
if i = 2n for some n

Store (Qi, 2 · Pi) F0 = (
√
Qi, 2 · Pi−1,

P 2
i−1−N

Qi
)

Compose F0 with stored forms according to the
binary representation of i/2 and store result to F0.
F0 = (A,B,C)
Q0 ← |A|, P0 ← B/2, Q1 ← |C|
q0 ← Q1, p0 ← P0, q1 ← Q0

while Pi 6= Pi−1 and pi 6= pi−1

Apply same recursive formulas to (Q0, P0, Q1) and (q0, p0, q1)
If Pi = Pi−1, either Qi or Qi/2 is a nontrivial factor of N .
If pi = pi−1, either qi or qi/2 is a nontrivial factor of N .

Figure 3: SQUFOF with Composition

Note that it is faster to approximate roughly which quadratic forms are needed to find
the symmetry point than to actually calculate the distance exactly. The result is that after
this composition, the quadratic form is close to the symmetry point but not exactly on it.
In the last while loop, the search for the symmetry point has to be made in both directions,

8The bound for ζ is proportional to log log N while the two distances on the right side of the formula
have a bound proportional to log N , so ζ is usually negligable, although it may be calculated if necessary.
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but this search is typically very short. The only forms that need to be stored are those with
an index that is a power of two.

For example, if a square were found on step 56, there should be roughly 28 steps backward
in the second phase. If after taking the square root and reversing the direction, F0 is
composed with the quadratic form with index 16, the form with index 8, and the form with
index 4, the result will be very close to the symmetry point.

Although much of the preceding theory was known, some of it was not and most of it
was very scattered with few proofs. In Appendix A I have compiled all of this information
and provided proofs and examples. Lemmas 1 - 2 provide a new and intuitive explanation
of the reversal of direction effected by taking the conjugate of the numerator. Lemmas 3 -
4 use this understanding to analyze the periodicity and symmetries of the cycles. Lemma
5 formally proves a well-known intuitive result about reduction. Lemma 6 analyzes the
symmetry points of the quadratic form cycle. Theorem 8 provides an important result on
how ambiguous cycles fit in the class group. This result was probably understood by Shanks,
as it is important for SQUFOF, but apparently never stated explicitly. Lemma 8 provides
some slight generalization to the description of ideals. Typically s = 1. This slight extra
generality allows a proof that multiplication of ideals corresponds to composition of quadratic
forms. Theorem 9 provides a slight generalization of a well known result. Typically, h = 1,
but the inclusion of the possibility that h = 2 allows the results from the distance formula to

be generalized to quadratic forms of discriminant ≡ 1 (mod 4) without working in Z
[√

N+1
2

]
.

Lemmas 11 and 12 are derived from [32] but have some variations that leads more directly to
the method of Voronoi and make it easier and more intuitive to prove that lattices correspond
to continued fractions. Lemma 14 uses the connection with continued fractions to derive a
distance for reduction.

Theorem 11 relates composition of quadratic forms with distance. Williams [32] provides
a very special case of this (limited to the principal cycle). This generalization is essential
for SQUFOF as it relates distances in different cycles with composition. Lemma 15, which
relates the entire distance around different cycles, is proved based on this.
§8 provides a complete description of Square Forms Factorization, including an explana-

tion of why Shanks was able to know whether or not a square was proper and an explanation
of what Shanks referred to as Fast Return. Fast Return, an idea that is typically not imple-
mented with SQUFOF, uses composition to significantly speed up the second phase of the
algorithm.

Appendix B includes the Magma implementation of SQUFOF with Fast Return. These
algorithms have also been implemented in C. These have both been tested extensively for
functionality. The runtimes have also been compared to elliptic curve method, multiple
polynomial quadratic sieve, and the number field sieve. Although a thorough comparison of
SQUFOF with other algorithms has not been done, it is fairly clear that on a single computer
SQUFOF is slower than elliptic curves, the number field sieve, or the multiple polynomial
quadratic sieve for most numbers. However, it has been conjectured by Pomerance [21] that
a parallel implementation of SQUFOF would be competitive. This is the current direction
of research.
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Parallelization

The current trend in ultra-fast computing is to use a large number of inexpensive processors
instead of a single expensive processor [11]. With the large amount of computation required
for factorization, the efficiency of a parallel implementation is especially important for these
algorithms. In 1982, Shanks and Cohen attempted a parallelization by having multiple pro-
cessors attempt to factor N , 3N , 5N , etc. This author has not attempted this parallelization
yet, but reportedly it was not effective. Gower’s recent Ph.D. thesis (under Dr. Wagstaff)
[8] analyzed the use of multipliers and found them effective, but not necessarily as a means
of parallelization (i.e. It is beneficial on average to multiply N by several small factors be-
fore factoring, but working on different multiples of N simultaneously does not provide a
significant advantage.)

Composition of quadratic forms provide a different possible approach to parallelization.
By computing a quadratic form several steps into the cycle and squaring it a reasonable9

number of times, a quadratic form far out into the cycle can be found. Call it F . The first
processor may be assigned to search this segment for a perfect square. The next processor
can search from F to F 2, the next from F 2 to F 3, etc. Each of these segments will be roughly
equal sizes. When a processor finds a perfect square, it may use the quadratic forms involved
in computing its segment in order to come close to the symmetry point. Specifically, this last
step is made easier if the starting point of the segment is found by squaring. In pseudo-code:

Given N to be factored:

r ← b√Nc
F0 ← (1, 2r,N − r2)
Cycle F0 several steps forward.
for i = 1 to size (size is the logarithmic size of a segment.)

Fi ← Fi−1 ∗ Fi−1

Processor 0:
Assign one processor to search from F0 to Fsize.
Fstart ← Fsize

Fend ← F 2
size

FrootS ← Fsize−1

FrootE ← Fsize

Fstep ← Fsize−1

while A factor hasn’t been found
Wait for a processor to be free and send Fstart, Fend, and FrootS.
Fstart ← Fend

FrootS ← FrootE

FrootE ← FrootE ∗ Fstep

Fend ← F 2
rootE

9Empirically, 20-30 times works nicely. This parameter isn’t critical.
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Processor n:
Recieve Fstart, Fend, and FrootS

count ← 0
F0 = (A,B,C)
while A factor is not found and Fstart 6= Fend

Cycle Fstart forward 2 steps.
count ← count+1
if A is a perfect square

Ftest ← F
−1/2
start

Ftest ← Ftest ∗ FrootS

for j = size to 1 (This loop composes Ftest with the necessary
if count > 2j forms to bring it close to the symmetry point.)
Ftest ← Ftest ∗ Fj

count ← count −2j

Search in both directions from Ftest for a symmetry point.
if Factorization found at symmetry point, output and quit.

if A factor is still not found
Recieve new Fstart, Fend, and FrootS and start over.

Figure 4: Parallel SQUFOF

Since there is no overlap between the segments searched by the processors and since
the perfect squares are, apparently, distributed randomly, this parallelization should be ex-
tremely efficient. The size of the segments is determined by how far the first for loop
goes. There are only two hazards when choosing this. If the segment size is too small, the
processors will finish their segments so quickly that recieving new segments will become a
bottleneck. Alternately, if the segments are too long, the processors may divide up more
than the entire cycle, so that there is overlap. However, except for rare numbers that will
factor trivially fast regardless, there is significant room in between these two bounds.

This parallel version has been implemented in C using the MPI library. The code is
included in Appendix C. It has not yet been compared with other algorithms.

Factorization using a Test of Direction

Based on this symmetry of the cycles of quadratic forms, any fast test to determine whether
or not the continued fraction expansion is in the correct direction, that is, whether or not
it has not passed the factorization yet, would provide a faster factorization algorithm by
performing a binary search (Figure 5).
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Given N to be factored:

Q0 ← 1, P0 ← b
√
Nc

Apply equation (2) for 2 steps.
F0 ← (Q2, 2 · P2,−Q3)
i← 0
while Fi is in the right direction

Fi+1 ← Fi ∗ Fi

i← i+ 1
Flast ← Fi−1

while i ≥ 0
if Flast ∗ Fi is in the right direction
Flast ← Flast ∗ Fi

i← i− 1
Search forward from Flast (should be only a couple steps)

to obtain the factorization.

Figure 5: Binary Search based on a Test of Direction

Example 8 N = 2035153, Q0 = 1, P0 = 1426
Then, F0 = (1, 2 ·1426,−1677). The square of this form would be itself, so we recursively

step forward a few steps to obtain: F8 = (663, 2774,−168).
This form is squared until it is past the symmetry point:

F8 ∗ F8 = (1569, 1522,−928) = F22

F22 ∗ F22 = (896, 2798,−87) = F44

F44 ∗ F44 = (1648, 1726,−783) = F82

F82 ∗ F82 = (411, 2104,−2259) is past the symmetry point.
F82 ∗ F44 = (9, 2846,−1136) = F134

F134 ∗ F22 is past the symmetry point.
F134 ∗ F8 = (1153, 1898,−984) = F144

Recursively stepping forward from here, it is quickly found that F147 = (−1008, 2018, 1009)
and F148 = (1009, 2018,−1008). Therefore, 1009 is the symmetry point and 2035153 =
1009 · 2017.

The decisions for this example of whether or not a form was reversed (past the symmetry
point) were determined by merely comparing with the actual continued fraction expansion.
However, ideally this can be done without doing the entire expansion. The function that
determines whether or not a form is reversed is called a test of direction. There are several
possible candidates:

Conjecture 1 If Qi|Qi−1, (Qi)
3 - Qi−1, and Qi is not a power of 2, then the continued

fraction expansion is in the correct direction.
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In all other cases, this test provides no information. The condition Qi|Qi−1 does not
occur very frequently, so on its own it cannot provide a useful test of direction. However,
the attempt to explain this empirical pattern has provided several possible alternatives:

First, it is possible to find a multiple k such that in the expansion with Qi unchanged,
Pi replaced by kPi and N replaced by k2N , this condition is met. For notation, let Qi =
Q′0. Since using −k instead of k produces the same sequence in the opposite direction,
it is necessary to relate this sequence to the original sequence in order to extract useful
information. From this, it has so far been found that if Qi+3|Q′1 and Q′0|Q′−1, then the original
expansion is in the correct direction. Finding multiples such that the second condition is

satisfied can be accomplished by using continued fractions to find the convergents of
√

N−Ri

Q2
i

,

where Ri ≡
√
N ≡ Pi − P 2

i −N

2Pi
(mod Q2

i ).
This provides a test of direction that returns a result about 2% of the time. This would

provide a polynomial time factorization algorithm, except that the time required to do this
test of direction increases with the size of N .

One other possible test of direction involves reduction distance. After a quadratic form
is squared, it often requires multiple steps in order to reduce to a quadratic form within
the standard bounds. This is referred to as reduction distance. Since the overall distance
from a symmety point is doubled when a quadratic form is squared, it makes some intuitive
sense that this distance from the nearest symmety point should be related to this reduction
distance. Empirically, the reduction distance for a quadratic form oriented away from the
nearest symmetry point tends to be shorter. Concerning the conjecture, if Qi | Qi−1, then
the square of (Qi, Pi−1,−Qi−1) is (Q2

i , Pi−1,−Qi−1/Qi) and the reduction distance is 0, so
this would provide an explanation for Conjecture 1.

Empirically, comparing reduction distances is a test of direction that generally works near
the symmetry point, but is inconclusive away from the symmetry point. Thus, one other idea
may be necessary in order to apply this. Using the class number formula [5], it is possible to
approximate what the distance to the symmetry point should be. This approximation may
be able to come close enough to the symmetry point that some combination of the two tests
of direction may be able to provide the necessary information.

Secure and Insecure Numbers

It is possible for the entire cycle to not contain a single perfect square that provides a
factorization, but this is extremely rare. There are some cases where it is possible to prove
that the algorithm will work.

Proposition 1 Let N ≡ 1 (mod 4), with −1 not a quadratic residue of N . Let Qs be the
second symmetry point in the principal cycle. gcd(Qs, N) is a nontrivial factor of N .

Proof: This proof is based on a number of results included in Appendix A.
By Theorem 4, there exists a symmetry point Qs distinct from 1 and since −1 is not a

quadratic residue of N , the period must be even, so that Qs | 2N . Assume Qs = 2. By
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Theorem 2 (a), N = P 2
s +QsQs+1, so that Ps must be odd. Therefore, since N ≡ 1 (mod 4),

4 | (N − P 2
s ), so that 2 | Qs+1. Therefore, by induction using Theorem 2 (b) and (g), Qi

must be even and Pi must be odd for all i. However, this is the principal cycle, so Q0 = 1,
contradicting this. Therefore Qs 6= 2. The only remaining possibility is that Qs > 2 and
therefore, since Qs | 2N , gcd(Qs, N) is a nontrivial factor for N . QED

For most other numbers, there appears to be no classification or order to the few numbers
that SQUFOF does not work for. However, it is also important to analyze which numbers
SQUFOF is faster or slower on.

In addition to being poorly understood and incompletely implemented, Square Forms
Factorization dropped from the forefront of research because it was conjectured that it was
only fast on integers with a high class number. At first, this appears reasonable, as a high
class number implies shorter period length and more squares. Indeed, integers with high class
numbers do factor very quickly with SQUFOF. However, this is not a thorough description.
For example 10000000000037 · 490000000000013 has class number 2 and SQUFOF finds a
factor on the second step. Conversely, 10000000000037 · 500000000000057 also has class
number 2 but does not contain a perfect square until after 2098040 steps, even though these
two numbers are roughly the same size and have roughly the same size factors.

Although these numbers were specifically calculated to meet this criteria (the 0’s do make
them look a bit unique), the effect is not unique and there are numbers of every size that
do this. An integer such as the first could have been chosen for the RSA algorithm without
any indication that there was a problem.

The reason the first number factored quickly was that the ratio of the factors is close to
a perfect square. Specifically, the second factor is approximately 49 times the first factor. In
the second number, the second factor is approximately 50 times the first number. In general
numbers of the form (a2m + b)(c2m + d) factor very quickly. However, it is not possible
to put an exact bound on how large b and d can be in this form, as for any range that
might be set for b and d, there are numbers that factor unusually fast and numbers that
don’t. Empirically, it appears that if b, d <

√
m, there is a high probability of this number

factoring quickly. Conjecture 2 provides the conditions that appear sufficient and necessary
for an integer to factor unusually fast.

Conjecture 2 Let N = pq. Let An

Bn
be the convergents to p

q
obtained from continued frac-

tions. If for some n, both An and Bn are perfect squares, then the runtime for the factoriza-
tion of N is O(

√
min(An, Bn)).

A proof, or even a really good explanation, for Conjecture 2 is still lacking. It is derived
from the fact that Square Forms Factorization (and other algorithms related to continued
fractions) may be considered as a generalization of Fermat’s method (see §3). Fermat’s
method is fast for numbers whose factors are close to each other. Continued fractions gener-
alize this to be fast whenever the factors may be multiplied by perfect squares to be close to
each other. The condition that is set is a measure of how close the two numbers (after mul-
tiplication by squares) are two each other. This conjecture has been tested empirically and
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found to be true on over 100000 integers ranging from 30 digits to over 100 digits. Average
runtime appears to be less than a second for numbers that meet this criteria.

In the current implementations of the RSA algorithm, there are conditions on the primes
chosen and the randomness of the process of choosing primes, but the threat that the two
primes chosen may be related to each other in some way is not checked for [17]. It is the
recommendation of this author that the RSA algorithm implement a quick check that the
two primes do not meet the conditions of Conjecture 2.
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Appendix A

Daniel Shanks’ Square Forms
Factorization

This is a detailed expository account of Shanks’ Square Forms Factorization (SQUFOF)
method, including proofs or detailed references of all results, in light of an understanding of
continued fractions, binary quadratic forms, lattices, and ideals.

1 Introduction

The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most
important and useful in arithmetic. It has engaged the industry and wisdom of
ancient and modern geometers ... the dignity of the science itself seems to require
that every possible means be explored for the solution of a problem so elegant
and so celebrated.

C. F. Gauss [7]

There is a significant body of knowledge concerning quadratic forms, continued fractions,
lattices, and ideals. However, much of this information is very spread out, especially that
dealing with the class group “infrastructure”. Therefore, one major purpose here is to
organize this information into a usable form, along with providing some of the connecting
historical information and providing sufficient examples so that the average reader may be
able to understand the main concepts, if perhaps not all of the minutia of the proofs.

These are extremely rich fields, and there are problems and ideas that have yet to be
addressed concerning binary quadratic forms and even concerning variations of SQUFOF
that Shanks considered. This paper is a complete proof of the simplest case only.

Of these objects, continued fractions, described in §2, appear the most concrete and are
the easiest to examine examples of, especially with respect to distance, and thus are useful
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for a conceptual understanding. §3 describes some of the direct applications of continued
fractions and the problems that caused Shanks to develop the theory further. Quadratic
forms, described in §4, are computationally the simplest format to implement and have
given rise to composition, an extremely useful tool. Ideals, in §5 are valuable because they
provide an alternate interpretation of composition and provide a link to lattices, described
in §6, from which “distance” is derived. §7 uses lattices and ideals to prove Theorem 11,
a powerful formula concerning infrastructure distance. §8 puts it all together to analyze
Shanks’ factorization algorithm.

This investigation will also define mappings between these different objects. These maps
will be represented by the letter Φ, with subscripts indicating the two sets being considered.
For example, ΦT,F would be a map from terms in the continued fraction to quadratic forms
and ΦF,T = Φ−1

T,F would be its inverse. Note that the order of the subscripts matters. Each
of these maps will be addressed individually.

2 Continued Fractions

One tool used by many different algorithms is the continued fraction expression for
√
N ,

where N is the number to be factored. This expression is calculated recursively[9]:

x0 =
√
N, b0 = bx0c (A.1)

∀i ≥ 1 xi =
1

xi−1 − bi−1

, bi = bxic (A.2)

√
N = b0 +

1

b1 + 1
b2+...

(A.3)

Observe that solving equation (A.2) for xi−1 gives xi−1 = bi−1 + 1
xi

. Repeatedly substi-
tuting this into itself gives equation (A.3).

Before developing the theory too much further, allow me to offer one example of how
this works, just so that the pieces make sense to you. To simplify the expansion some, the
integers taken out in the third step of each line are the bi:

Example 9

x0 =
√

41, b0 = 6
√

41 = 6 + 1
x1

x1 = 1√
41−6

=
√

41+6
5

= 2 +
√

41−4
5

√
41 = 6 + 1

2+ 1
x2

x2 = 5√
41−4

=
√

41+4
5

= 2 +
√

41−6
5

√
41 = 6 + 1

2+ 1

2+ 1
x3

x3 = 5√
41−6

=
√

41+6
1

= 12 +
√

41−6
1

√
41 = 6 + 1

2+ 1

2+ 1

12+ 1
x4

33



From this step, it is evident that x4 = x1 and the cycle repeats from here. Observe that if
the sequence starts with x0 =

√
41 + 6, then also x3 = x0. Regardless, the expression on

the right, if truncated at any point provides a rational approximation to
√

41. Often this
will be written as merely [6, 2, 2, 12, ...] to save space or [6, 2, 2, 12] to indicate that this part
repeats. The various numbers on the left have some important properties that we will now
analyze in some depth.

Throughout, assume that N is an odd positive integer and is not a perfect square. For
number theory purposes, let

x0 =

√
N + P−1

Q0

where P−1, Q0 are integers chosen such that

P 2
−1 ≡ N (mod Q0), 0 < P−1 <

√
N, and |

√
N −Q0| < P−1. (A.4)

There are many ways of doing this1. The recursive formulas are:

xi+1 =
1

xi − bi bi = bxic, i ≥ 0

Formally, the assumed equation is:

xi+1 =
Qi√
N − Pi

=

√
N + Pi

Qi+1

= bi+1 +

√
N − Pi+1

Qi+1

, i ≥ 0 (A.5)

Note that this equation serves as a definition of Qi, Pi, Qi+1, Pi+1 ∈ Q, so that these equations
are true regardless of the conditions on these variables. Theorem 2 provides some well-known
fundamental properties and identities of continued fractions. In [23], Hans Riesel provides
very clear proofs of most of this.

Theorem 2 [23] In the continued fraction expansion of x0 satisfying (A.4), each xi reduces

to the form
√

N+Pi−1

Qi
, with (a) N = P 2

i +QiQi+1, (b) Pi = biQi−Pi−1, (c) bi =
⌊
b√Nc+Pi−1

Qi

⌋
≥

1, (d) 0 < Pi <
√
N , (e) |√N − Qi| < Pi−1, (f) Qi is an integer, and (g) Qi+1 = Qi−1 +

bi(Pi−1 − Pi). Furthermore, (h) this sequence is eventually periodic.

Proof:
(a) From (A.5), the equation Qi√

N−Pi
=

√
N+Pi

Qi+1
requires that N = P 2

i +QiQi+1.

(b) It is evident from simplifying the expression on the far right of (A.5) that

√
N + Pi

Qi+1

=

√
N + bi+1Qi+1 − Pi+1

Qi+1

.

1Choosing x0 =
√

N +b√Nc, so that P−1 = b√Nc and Q0 = 1 is one possibility. Choosing x0 =
√

N+P−1
2 ,

where P−1 = b√Nc or b√Nc − 1, such that P−1 is odd, is another possibility.
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Therefore, Pi+1 = bi+1Qi+1 − Pi.
(c) For i = 0, by the assumption |√N −Q0| < P−1

Q0 <
√
N + P−1

Therefore,

b0 =

⌊√
N + P−1

Q0

⌋
≥ 1

For i > 0, bi−1 = bxi−1c. By the definition of floor, xi−1− 1 < bi−1 ≤ xi−1. If bi−1 = xi−1,

then the continued fraction [b0, b1, ...bi−1] is rational and is equal to x0 =
√

N+P−1

Q0
, which

is irrational since N is not a perfect square. Therefore, xi−1 − 1 < bi−1 < xi−1, so that
0 < xi−1 − bi−1 < 1. Therefore, xi = 1

xi−1−bi−1
> 1, so that bi = bxic ≥ 1.

Note that there is no integer between b√Nc + Pi−1 and
√
N + Pi−1, so it is trivial that⌊√

N+Pi−1

Qi

⌋
=

⌊
b√Nc+Pi−1

Qi

⌋
.

(d-e) The statements |√N −Qi| < Pi−1 and 0 < Pi−1 <
√
N may be proven inductively.

Base case: i = 1
P0 = b√Nc or b√Nc − 1, so by definition 0 < P0 <

√
N .

Since x0 meets (A.4), |√N −Q0| < P−1.
Induction: Assume |√N −Qi| < Pi−1 and 0 < Pi−1 <

√
N .

Note that these assumptions require that 0 < Qi < 2
√
N . From (c), 0 < xi − bi < 1

means 0 <
√

N−Pi

Qi
< 1. Since Qi > 0, 0 <

√
N − Pi < Qi. From the left side of this,

Pi <
√
N . Now, either Qi ≤

√
N or Qi >

√
N .

Case 1: If Qi ≤
√
N , then

√
N − Pi < Qi ≤

√
N , so that Pi > 0.

Case 2: If Qi >
√
N , then by (b), Pi = biQi − Pi−1 > bi

√
N −√N = (bi − 1)

√
N ≥ 0.

Therefore, 0 < Pi <
√
N .

Since xi+1 > 1, it is trivial that Qi+1 <
√
N + Pi so that showing |√N − Qi+1| < Pi

reduces to showing Qi+1 >
√
N − Pi. Since 1 =

N−P 2
i

QiQi+1
=

√
N+Pi

Qi

√
N−Pi

Qi+1
, this is equivalent to

showing: √
N + Pi

Qi

> 1. (A.6)

Assume the contrary, that Qi ≥
√
N + Pi. Then,

bi(
√
N + Pi)− Pi ≤ biQi − Pi = Pi−1 <

√
N,

bi
√
N + Pi(bi − 1) <

√
N,

√
N(bi − 1) + Pi(bi − 1) < 0,

(bi − 1)(
√
N + Pi) < 0.

But
√
N and Pi are positive, so this implies bi < 1, contradicting Theorem 2 (c). Therefore,
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(A.6) holds.

(f) The fact that N = P 2
i + QiQi+1 requires that Qi+1 =

N−P 2
i

Qi
. In order to show that

∀i Qi is an integer, the statements that Qi is an integer and Qi | N − P 2
i may be proven

inductively.
Base case: i = 0
By definition, Q0 is an integer and P 2

−1 ≡ N (mod Q0). But P0 ≡ P−1 (mod Q0), so
P 2

0 ≡ N (mod Q0). Therefore, Q0 | N − P 2
0 .

Induction: Assume for some i, Qi is an integer and Qi | (N − P 2
i ). Then, since N =

P 2
i + QiQi+1, Qi+1 =

N−P 2
i

Qi
, so that since Qi | (N − P 2

i ), Qi+1 is an integer. Also, Qi =
N−P 2

i

Qi+1
, so that since Qi is an integer, Qi+1 | (N − P 2

i ), so that P 2
i ≡ N (mod Qi+1). Since

Pi+1 = bi+1Qi+1 − Pi, Pi+1 ≡ Pi (mod Qi+1). Therefore, P 2
i+1 ≡ N (mod Qi+1), so that

Qi+1 | (N − P 2
i+1) and the induction is complete.

(g) Solving (b) for bi gives Pi−1+Pi

Qi
= bi. Multiply by (Pi−1 − Pi) to obtain:

P 2
i−1 − P 2

i

Qi

= bi(Pi−1 − Pi)

Rearranging and adding N
Qi

gives:

N − P 2
i

Qi

=
N − P 2

i−1

Qi

+ bi(Pi−1 − Pi)

Qi+1 = Qi−1 + bi(Pi−1 − Pi)

.
(h) Since each xi and thus the entire sequence that follows it is defined by the two integers

Qi and Pi−1, limited by the bounds 0 < Qi < 2
√
N and 0 < Pi <

√
N , there is only a finite

number of distinct xi’s. Therefore, for some π and some k, ∀i ≥ k xi = xi+π. QED

The fact that each xi reduces to the form
√

N+Pi−1

Qi
is important for computational effi-

ciency because this together with (c) imply that floating point arithmetic is not necessary for
any of these calculations. Also, by use of (b) and (g), the arithmetic used in this recursion
is on integers < 2

√
N .

One application of continued fractions is rational approximations.

√
N = b0 +

1

b1 + 1
b2+...

If this continued fraction is truncated at any point, the result is an approximation to√
N . One might imagine that it is necessary to start simplifying at the lower right end of

this expression to obtain this approximation. However, Theorem 3, also included in [23],
provides a simpler answer.

Theorem 3 Let:
A−1 = 1, A0 = b0, Ai = biAi−1 + Ai−2, i > 0
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B−1 = 0, B0 = 1, Bi = biBi−1 +Bi−2, i > 0

Then for i ≥ 0, [b0, b1, ...bi] = Ai

Bi
and A2

i−1 −B2
i−1N = (−1)iQi.

Note that the last equation gives A2
i−1 ≡ (−1)iQi (mod N). Although this equation will

change some when generalized to other continued fractions, these denominators {Qi} will
consistently be referred to as pseudo-squares. A proof of this theorem is given in [23].
Therefore, instead of reproducing the proof, I will provide an example:

Example 10
x0 =

√
403 + 20 = 40 +

√
403− 20

x1 = 1√
403−20

=
√

403+20
3

= 13 +
√

403−19
3

x2 = 3√
403−19

=
√

403+19
14

= 2 +
√

403−9
14

x3 = 14√
403−9

=
√

403+9
23

= 1 +
√

403−14
23

x4 = 23√
403−14

=
√

403+14
9

= 3 +
√

403−13
9

x5 = 9√
403−13

=
√

403+13
26

= 1 +
√

403−13
26

x6 = 26√
403−13

=
√

403+13
9

= 3 +
√

403−14
9

x7 = 9√
403−14

=
√

403+14
23

= 1 +
√

403−9
23

From this, a table may be used to recursively calculate the approximation2:

i −1 0 1 2 3 4 5 6
bi 20 13 2 1 3 1 3
Ai 1 20 261 542 803 2951 3754 14213
Bi 0 1 13 27 40 147 187 708

filling in Ai and Bi from left to right. From the last column,
√

403 ≈ 14213/708.

Since the continued fraction is eventually periodic, it is reasonable to consider that when it
loops around on itself, the terms being considered may have come from some terms “earlier”
in the recursion. Example 10 provides some indication as to how the recursive formulas may
be reversed, as {Qi} and {bi} are symmetric about x5, so that after x5 these numbers are
cycled through in reverse order. Lemma 1 addresses how each bi is calculated two different
ways and Lemma 2 shows that by exchanging these two related expressions, the direction is
reversed.

Lemma 1

b
√
N + Pi

Qi

c = b
√
N + Pi−1

Qi

c = bi

2Actually, in this case b0 = 40, but since that would be an approximation to x0 =
√

403+20, subtracting
20 from b0 yields an approximation to

√
403.
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Proof: The second part of this equation, that b
√

N+Pi−1

Qi
c = bi follows from the definition

of bi.
Theorem 2 (e) implies that Qi >

√
N − Pi−1. Therefore,

b
√
N + Pi

Qi

c = b
√
N + biQi − Pi−1

Qi

c = bi + b
√
N − Pi−1

Qi

c = bi. QED

Considering Example 10, it is then natural to suspect that the mechanism for going in
the opposite direction will be precisely the same as the standard approach, except that the
numerator is changed first. Note that this same change (with the exception of c0) could be
achieved by merely changing the sign of Pi−1.

Lemma 2 Let xi, bi, Pi, Qi, and N be as in Theorem 2, i ≥ 0. Let y0 =
√

N+Pi+1

Qi+1
and let

c0 = by0c. Define inductively yj = 1
yj−1−cj−1

. Then c0 = bi+1 and yj =
√

N+Pi−j+1

Qi−j+1
, j ≥ 0.

Proof: By (A.6) and Lemma 1, c0 = by0c = b
√

N+Pi+1

Qi+1
c = bi+1. By mathematical

induction it suffices to prove the case j = 1. Using Theorem 2

y1 =
1

y0 − c0 =
1

√
N+Pi+1

Qi+1
− bi+1

=
1

√
N+Pi+1−bi+1Qi+1

Qi+1

=
1

√
N−Pi

Qi+1

=

√
N + Pi

N−P 2
i

Qi+1

=

√
N + Pi

Qi

QED

This demonstrates an important fact about continued fractions, the fact that the direction
of the sequences of pseudo-squares and residues can be reversed (i.e. the indices decrease)
by making a slight change and applying the same recursive mechanism.

Using Lemma 2, x3 may be used, for example, to find x2 and x1. Continuing this
process, denote the terms before x0 as x−1, x−2, .... Define Q−i and P−i similarly3. Example
11 demonstrates this with the continued fractions from Example 10:

Example 11 x3 =
√

403+9
23

and P3 = 14, so let y0 =
√

403+14
23

to obtain

y0 =
√

403+14
23

= 1 +
√

403−9
23

y1 = 23√
403−9

=
√

403+9
14

= 2 +
√

403−19
14

y2 = 14√
403−19

=
√

403+19
3

= 13 +
√

403−20
3

y3 = 3√
403−20

=
√

403+20
1

= 40 +
√

403−20
1

y4 = 1√
403−20

=
√

403+20
3

= 13 +
√

403−19
3

y5 = 3√
403−19

=
√

403+19
14

= 2 +
√

403−9
14

3Since y0 meets (A.4) and the same recursive formula is applied, it is clear that Theorem 2 still applies
to negative indices.
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Then, just as y2 gives x1 =
√

403+20
3

, y4 gives x−1 =
√

403+19
3

and y5 gives x−2 =
√

403+9
14

.

Combining periodicity with reversibility strengthens Theorem 2 (h).

Lemma 3 There exists a positive integer π such that ∀i xi = xi+π, i not necessarily positive.

Proof: From the proof of Theorem 2 (h) there are k and π such that ∀i ≥ k, xi = xi+π.
Essentially,this is equivalent to proving that there is no lower bound for k. Assume the
contrary, that there is some lower bound k. Let k and π be the smallest such integers. Then
xk = xk+π. But by Lemma 2 xk−1 = xk+π−1, so that k − 1 also meets this criteria, violating
the assumption that k is the smallest such integer. Therefore, ∀i xi = xi+π. QED

Throughout, π will consistently denote the period, even when considering this period in
the context of quadratic forms or lattices.

Often the continued fraction may have other characteristics that are interesting besides
its periodicity. For factorization, continued fractions with symmetries, such as at x0 and x5

from Example 10, will be especially important. If the starting condition near some point is
the same in both directions, the entire sequence will be symmetric about that point. This is
the point of Lemma 4.

Lemma 4 Let x0 =
√

N+P−1

Q0
meet (A.4) such that Q0 | 2P−1. The sequence of pseudo-

squares is symmetric about Q0, so that ∀i Qi = Q−i.

Proof:
Observe that 0 <

√
N − P0 < Q0, with P0 = b0Q0 − P−1, so that

0 <
√
N − b0Q0 + P−1 < Q0.

There can only be one possible integer value of b0 that satisfies this inequality. Since 0 <√
N − P−1 < Q0, b0 = 2P−1/Q0 satisfies this inequality, so that P0 = P−1.

Let y−1 =
√

N+P1

Q1
. Then, by Lemma 2, y0 =

√
N+P0

Q0
=

√
N+P−1

Q0
= x0

Therefore, the sequence of pseudo-squares will be symmetric about Q0, since in either
direction the first continued fraction term is the same. Therefore, Qi = Q−i. QED

The presence of one point of symmetry allows a proof that another point of symmetry
exists and that a factorization of N may be obtained from this symmetry4:

Theorem 4 Let s = bπ
2
c, where π is the period from Lemma 3. If π is even, ∀i Qs+i = Qs−i,

but Qs 6= Q0 and Qs | 2N . If π is odd, ∀i Qs+i+1 = Qs−i and either gcd(Qs, N) is a nontrivial
factor of N or −1 is a quadratic residue of N .

4This was actually discovered in the opposite order. It was clear that ambiguous forms that met this
criteria provided a factorization but was later realized that these same forms produced symmetry points.
This was first noticed by Gauss [7] and first applied by Shanks [29].
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Proof:
Case 1: If π is even, π = 2s. Then, by Lemmas 4 and 3, Qs+i = Q−s−i = Q2s−s−i = Qs−i.

Since Qs+1 = N−P 2
s

Qs
and Qs−1 =

N−P 2
s−1

Qs
, this simplifies to P 2

s = P 2
s−1, but since ∀i Pi > 0,

this provides Ps = Ps−1.
Now Qs = Ps+Ps−1

bs
= 2Ps

bs
, so that Qs | 2Ps.

Assume Qs = Q0. If Qs is even, then P0 ≡ Ps ≡ 1 (mod 2) and if Qs is odd, Qs | Ps.
Either way, there is then a unique integer in the range (

√
N − Q0,

√
N) satisfying these

conditions, so that Ps = P0. Therefore, xs =
√

N+P0

Q0
= x0, contradicting the fact that π is

the smallest positive integer such that ∀i Qi = Qi+π. Therefore, Qs 6= Q0.
Now N = P 2

s +QsQs+1, so it is apparent that if Qs is odd, then Qs | Ps, so that Qs | N .
Conversely, if Qs is even, then (Qs/2) | Ps, so that (Qs/2) | N . Either way, Qs | 2N .

Case 2: If π is odd, π = 2s + 1. Then, by Lemma 4 and 3, Qs+i+1 = Q−s−i−1 =
Q2s+1−s−i−1 = Qs−i.

Specifically, Qs = Qs+1, so that N = P 2
s + QsQs+1 = P 2

s + Q2
s, so that P 2

s+1 ≡ −Q2
s

(mod N). If gcd(Qs, N) > 1, this is a nontrivial factor ofN , and the proof is done. Therefore,
assume that Qs and N are relatively prime, so that Q−1

s (mod N) exists. Then (Q−1
s )2P 2

s+1 ≡
−1 (mod N). Then Q−1

s Ps+1 is a square root of −1 modulo N . QED
One final concept that will appear much more important in later sections is equivalence.

Define the set T to be set of all numbers of the form
√

N+P
Q

such that:

P 2 ≡ N (mod Q), (A.7)

Then define

T∗ = {x ∈ T : 0 < P <
√
N, |
√
N −Q| < P}.

An element x ∈ T is reduced if x ∈ T∗. For x, y ∈ T∗, x is equivalent to y if x appears
in the same continued fraction expansion as y and it is trivial that this is an equivalence
relation on T∗. Extending this to all of T requires a lemma relating elements of T−T∗ with
elements of T∗.

Lemma 5 Let x = x0 ∈ T− T∗. x0 may be reduced by applying

xi+1 =
1

xi − bi , bi = bxi − 1/2c, i ≥ 0 (A.8)

until |Qi| < 2
√
N for some i and then applying equation (A.2) normally until xk ∈ T∗ for

some k > 0.

Proof: The choice of bi yields that
∣∣∣
√

N−Pi

Qi

∣∣∣ < 1
2

after the first step, so that |Pi| <
1
2
|Qi|+

√
N . Therefore,
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|Qi+1| =
∣∣∣N−P 2

i

Qi

∣∣∣
=

∣∣∣
√

N−Pi

Qi

∣∣∣ |
√
N + Pi|

< 1
2
(2
√
N + 1

2
|Qi|

=
√
N + 1

4
|Qi|

so that |Qi| will decrease as long as |Qi| > 4
3

√
N . When |Qr| < 2

√
N , revert back to the

standard formula for br. There are three cases for what Qr is:
Case 1: 0 < Qr <

√
N . In this case, it is clear that xr+1 will be reduced.

Case 2:
√
N < Qr < 2

√
N . In this case, if Pr > 0, then xr+1 will be reduced. Otherwise,

|Pr| <
√
N , so that xr+1 will be in Case 1.

Case 3: −2
√
N < Qr < 0. Then

√
N < Pr <

√
N + |Qr|, yielding Qr+1 < 2

√
N + |Qr|.

If Qr+1 < 2
√
N , it is in Case 1 or Case 2. If 2

√
N < Qr+1 < 2

√
N + |Qr|, the choice of br

provides
√
N + Pr > Qr+1, so that 0 < Pr+1 <

√
N , so that xr+2 will be in Case 1. QED

I will provide one example of reduction:

Example 12

x0 =
√

403+267
−134

= −2 +
√

403−1
−134

x1 = −134√
403−1

=
√

403+1
−3

= −8 +
√

403−23
−3

x2 = −3√
403−23

=
√

403+23
42

= 1 +
√

403−19
42

x3 = 42√
403−19

=
√

403+19
1

= 39 +
√

403−20
1

Lemma 5 defines a map from T to T∗ (Elements of T∗ are mapped to themselves). Then
two elements are equivalent if their corresponding elements of T∗ are equivalent and it is
clear that this is still an equivalence relation. Essentially, this equates to saying that two
numbers x and y are equivalent if their continued fraction expansions have the same “tail”,
so that after a certain number of terms of each they have identical cycles. §4 will define a
different equivalence relation on binary quadratic forms and then prove that it corresponds
to this.

3 From Morrison-Brillhart to Shanks

Morrison and Brillhart developed one simple and fairly intuitive algorithm for using contin-
ued fractions for factorization [19]. The entire algorithm is a bit more complicated, but here
is a description sufficient for our purposes.

If the equation

x2 ≡ y2 (mod N) (A.9)

can be solved such that

x 6≡ ±y (mod N), (A.10)
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then it is evident that gcd(x − y,N) provides a nontrivial factor of N . Choosing a value
for x and then looking for a value that works for y is not computationally effective for large
N . Fermat, the first to employ this concept, tested values of x greater than

√
N to find

a value such that x2 (mod N) was already a perfect square. However, these numbers get
large quickly. Continued fractions provide a better approach to achieving this and since
0 < Qi < 2

√
N , the chances of finding a perfect square are greatly improved. The second

part of Theorem 3 states that A2
i−1−B2

i−1N = (−1)iQi. Therefore A2
i−1 ≡ (−1)iQi (mod N).

If for some i, Q2i is a perfect square then this provides a solution to (A.9) and it only remains
to check whether or not gcd(x + y,N) or gcd(x − y,N) provide a nontrivial factor of N .
However, there are not very many perfect squares in the continued fraction expansion so
Morrison and Brillhart [19] used products to obtain squares. For example, for N = 1333,
the continued fraction expansion provides 732 ≡ −3 (mod N) and 17892 ≡ −12 (mod N).
From this, (73 · 1789)2 ≡ (−3)(−12) = 62 (mod N), quickly yielding 1333 = 31 · 43.

There are a couple of problems with this algorithm. First, it requires the calculation of
the Ai’s, which are of the same size as N , after reduction modulo N , while the rest of the
algorithm only requires arithmetic on numbers of size

√
N . Second, after going through a

nontrivial amount of computation to find a relation that solves (A.9), not all of these result
in a factorization. I provide one example:

Example 13 In the continued fraction for
√

1333, Q6 = 9 = 32 and A5 = 10661, so that
106612 ≡ 32 (mod 1333). Unfortunately 10661 ≡ −3 (mod 1333), so this does not result in
a nontrivial factor of 1333.

Although it is well enough on a computer to run the algorithm a few times and have it
fail a few times, Daniel Shanks decided he needed to understand it a little better. Based
on an understanding of quadratic forms and the class group infrastructure, Daniel Shanks
developed several very interesting algorithms for factorization ([29],[26]). First he developed
an improvement to the Morrison-Brillhart algorithm. Roughly speaking, rather then saving
the Ai’s, he was able to use composition of quadratic forms to combine numbers to produce
squares and then use the “infrastructure” to use those squares to find a factorization. In
addition, he developed from the concept of infrastructure a system of predicting whether
or not any given square would provide a nontrivial factor. Unfortunately, this didn’t save
very much time and was a much more complicated algorithm than the Morrison-Brillhart
algorithm.

From here the development of the algorithm was prompted by the number 260 + 230 − 1.
It failed a Fermat primality test5, but when Morrison and Brillhart tried to factor it, it
failed 114 times. Therefore, they stopped, multiplied it by some small constant and tried
again. This time it worked on the first try, but they wanted to know why it had failed so
many times. So they asked Shanks to analyze it. Unfortunately (or fortunately in hindsight),
Shanks only had an HP-65 available and he couldn’t fit his entire algorithm into it. Therefore,

5The Fermat primality test is based on Fermat’s classical result that for p prime, ap ≡ a (mod p) [9].
Equivalently, if aN 6≡ a (mod N) for some integer a, then N isn’t prime.
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he discarded all the work of combining numbers to form squares and just cycled through
until he found one already there. The code for this was much shorter, and as it turned out
the algorithm was actually significantly faster.

4 Quadratic Forms

A fuller account of binary quadratic forms can be found in Gauss’s [7] and in Buell’s [2].
However, here are the necessary fundamental ideas.

A binary quadratic form is a polynomial of the form F (x, y) = ax2+bxy+cy2, x, y, a, b, c ∈
Z (Often this is abbreviated as (a, b, c)). In some sense then, a quadratic form may be
considered to be the set of all the numbers it can represent for various values of x and y.
Thus, two quadratic forms are equivalent if they represent the same set of integers. It is
evident that if one form is transformed into another by the substitution

[
x
y

]
=

[
a b
c d

] [
x′

y′

]
, ad− bc = ±1, (A.11)

then, since this matrix is invertible, the two forms are equivalent. As one further useful
distinction, (A.11) is proper if its determinant is +1 and improper if its determinant is −1.
The symbol (∼) will only apply to proper equivalence. For the purpose of factorization, the
interesting forms are those that can be improperly transformed into themselves, referred to
as ambiguous forms.

Example 14 F (x, y) = −14x2 + 10xy + 5y2 is transformed into itself by the substitution:

[
x
y

]
=

[
1 0
−2 −1

] [
x′

y′

]
,

so (−14, 10, 5) is ambiguous.

Denote the set of all quadratic forms with discriminant ∆ by F∆, or often just F. The
next obvious question is the organization of all of the quadratic forms equivalent to some
given form. Since there are an infinite number of forms equivalent to any form, the search
must be narrowed some by first defining reduced forms.

Definition 2 A quadratic form ax2 + bxy + cy2, with positive discriminant ∆ = b2 − 4ac is
reduced if:

0 < b <
√

∆ (A.12)

|
√

∆− 2|a|| < b (A.13)

Note that ∆ = b2 − 4ac and (A.12) require that ac < 0, so that a and c must have opposite
signs.
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Making Gauss’s description of the organization make some sense will require one more
of his definitions:

Definition 3 Two forms F (x, y) = ax2 + bxy + cy2 and F ′(x, y) = a′x2 + b′xy + c′y2 are
adjacent if c = a′.

To each quadratic form, there is a unique reduced equivalent form adjacent to it on
each side6, and since (A.12-A.13) imply a finite number of possible coefficients, this process
eventually repeats, forming a cycle. The important aspect of this is that the cycle is actually
all of the reduced forms equivalent to the first form:

Theorem 5 [7] If the reduced forms F ,F ′ are properly equivalent, each of them will be
contained in the period of the other.

Gauss proves this in Article 193 of [7], Lenstra proves this in [15], and it is a corollary of
Lemma 13 in §6. Therefore the proof is omitted.

For now, the important detail is that the quadratic forms correspond directly to the
elements of T, and that the reduced quadratic forms correspond to elements of T∗. Note
that the elements of T have attached indices, where the important trait of the indice is
whether it is odd or even. Define a map from T to F by

ΦT,F : T→ F√
N−Pi

Qi
→ Fi(x, y) = Qi(−1)ix2 + 2Pixy +Qi+1(−1)i+1y2 (A.14)

The inverse map is

ΦF,T : F→ T

ax2 + bxy + cy2 → xi =

√
∆/4−b/2

|a| ∈ T (A.14′)

where the discriminant of the quadratic form is ∆ is the element of T is given either an
even or odd indice as a is positive or negative, respectively. Note that ∆ = b2 − 4ac gives
4a | ∆− b2, so that xi really is in T.
§2 defined an equivalence on T and suggested that it corresponded with an equivalence

of binary quadratic forms. Theorem 6 formalizes this:

Theorem 6 Under the mapping ΦT,F, the equivalence classes of T correspond to the equiva-
lence classes of F. That is, for xi, xj ∈ T corresponding to Fi = ΦT,F(xi), Fj = ΦT,F(xj) ∈ F,
respectively, xi ∼ xj if and only if Fi ∼ Fj.

Proof:
Let xi ∼ xj. Since xi and xj must be in the same continued fraction expansion, assume

without loss of generality that j = i + 1. The other cases may be easily derived from this
case. Then the quadratic form related to xi is given in (A.14). The substitution

6Although Gauss had a recursive mechanism for finding these, continued fractions provide a sufficient
mechanism for this that will be defined momentarily. Note that reversal suddenly becomes trivial.
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[
x
y

]
=

[
0 1
−1 (−1)ibi+1

] [
x′

y′

]

transforms Fi into

Qi+1(−1)i+1x2 + 2Pi+1xy +Qi+2(−1)i+2y2

Observe that this matrix has determinant 1, so that this equivalence is proper.
In order to prove the converse, that the xi’s related to equivalent quadratic forms are

equivalent, by Theorem 5, observe that the last coefficient of the quadratic form related to
xi, Qi+1(−1)i+1, is then the first coefficient of the quadratic form related to xi+1. Therefore,
these two forms are adjacent and thus equivalent. QED

The real value of quadratic forms is the composition of quadratic forms. In Article 236
of [7], Gauss provides a very flexible definition of composition. Gauss defines composition
as multiplying two quadratic forms together and then making a substitution to simplify this
into another binary quadratic form. The algorithm he provides is very complicated, allowing
for choices of variables along the way that permit the result to be any quadratic form in the
resulting equivalence class. The result of composition should be predictable, so definition
needs to be limited some. Shanks and Buell both provide a significant simplifaction of this
algorithm. The symbol (∗) will consistently be used for composition.

Proposition 2 [2] Let F1 = (a1, b1, c1) and F2 = (a2, b2, c2) be primitive forms of discrimi-
nants d1 and d2, respectively, such that d1 = ∆n2

1 and d2 = ∆n2
2 for integers n1 and n2 and

∆, with ∆ = gcd(d1, d2). Let

m = gcd(a1n2, a2n1,
b1n2 + b2n1

2
).

Then the congruences

mn1B ≡ mb1 (mod 2a1)
mn2B ≡ mb2 (mod 2a2)

m(b1n2 + b2n1)B ≡ m(b1b2 + ∆n1n2) (mod 4a1a2)

are simultaneously solvable7 for an integer B, and the composition of F1 and F2 is:

F1 ∗ F2 = (
a1a2

m2
, B,

(B2 −∆)m2

4a1a2

)

of discriminant ∆.

See [28] for a derivation of this in the case where the discriminants are equal or [2] for a
proof of this case. Buell [2] also provides the substitutions that would be needed for Gauss’s
definition of composition.

The next question is how this operation is related to equivalence.

7By convention, choose the answer with the smallest absolute value.
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Theorem 7 If F1 ∼ F2, then F ∗ F1 ∼ F ∗ F2.

Gauss proves this in Article 237-239 of [7].
Therefore, composition treats the equivalence classes in the convenient manner. These

equivalence classes are then the elements of the class group, with composition as the group
operation. The application of Theorem 7 is that it doesn’t matter which form is used to
represent an equivalence class.

The significance of ambiguous forms for factorization has been mentioned some above. It
is evident that if one form is ambiguous, then its entire equivalence class is also ambiguous.
Lemmas 6 generalizes the reasons to be interested in these classes.

Lemma 6 An ambiguous equivalence class contains two points of symmetry, that is, pairs
of reduced adjacent forms, (c, b, a) and (a, b, c) in the cycle that are the symmetric reverse
of each other. Let a be the connecting term of either symmetry point. Either a divides the
determinant, or a/2 divides the determinant.

Proof:
Let A be an ambiguous equivalence class and let F = ax2 + bxy + cy2 ∈ A. Let F ′ =

cx2 + bxy + ay2. Then since F ∈ A, there is a substitution of determinant −1 that maps F
into itself. Since the obvious substitution to exchange x and y in F has determinant −1, the
product of these two is a proper substitution that transforms F into F ′. Therefore, F ′ ∈ A,
so that if F is F0, F

′ is Fj for some j. Then that F1 must be the reverse of Fj−1, and
so forth. Now, if j is even, then by this process Fj/2 is its own reverse. However, by the
definition of being reduced, the end coefficients of each form must have opposite sign, so this
is impossible. Therefore, j must be odd, and then F j−1

2
is the reverse of F j+1

2
.

At this point, observe that since the end-coefficients alternate signs, the entire period
must be even. By the same arguments as Theorem 4, one could show that there must be
another point of symmetry with the property that ∀i Qs+i = Qs−i, but such that Qs is
not the same as the connecting term at the first symmetry point. The two quadratic forms
containing Qs as an end coefficient then meet the criteria.

The fact that either a divides the determinant, or a/2 divides the determinant was proven
in Theorem 4, since the determinant is 4N . QED.

Note that Theorem 4 described two different types of points of symmetry. With the
quadratic form cycle, the second case can be ignored because of the alternating signs. How-
ever, it is quite possible for the term at one symmetry point to be merely the negative of the
term at the other symmetry point. This would correspond to the continued fraction having
an odd period and there would be a symmetry point of the second type in the continued frac-
tion at half-way. However, this type of symmetry does not generally provide a factorization
for N .

Lastly, it is important how these ambiguous forms fit into the rest of the class group.
First, addressing the class group structure requires inverses. Lemma 7 is fairly elementary
and is probably stated somewhere else. Let 1 represent the form in the principal cycle whose
first coefficient is 1. Let F−1 indicate the symmetric reverse of F , (a, b, c)−1 = (c, b, a).
Lemma 7 justifies this notation:
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Lemma 7 F ∗ F−1 ∼ 1

Proof:
Let F = ax2 + bxy+ cy2. Then F−1 = cx2 + bxy+ ay2. Let G be the next form adjacent

to F−1, that is G = ax2+b′xy+c′y2, with a | (b+b′) from the correspondance with continued
fractions. Composing F ∗G, n1 = n2 = 1 and m = a, so that the first coefficient of F ∗G is
1. Therefore, F ∗G ∼ 1, but F−1 ∼ G, so F ∗ F−1 ∼ 1. QED.

Note that this implies that the square of a symmetry point is 1.
Theorem 8 was probably known by Shanks, since SQUFOF depends highly on it, but it

does not seem that he states this explicitly anywhere.

Theorem 8 An equivalence class has order 2 or 1 in the class group if and only if it is
ambiguous.

Proof:
Let A be an ambiguous class. Let F ∈ A. Then F ∼ F−1, so that F ∗ F ∼ F ∗ F−1 ∼ 1.

Therefore F ∗ F is in the principal cycle, so that A has order 2 or 1 in the class group.
Conversely, assume that an equivalence class A has order 2 or 1 in the class group. Let

F ∈ A. Then F ∗F is in the principal ideal, so that F ∗F ∼ (F ∗F )−1. But from composition,
it is clear that (F ∗ F )−1 ∼ F−1 ∗ F−1. So F ∗ F ∼ F−1 ∗ F−1. Since the class group is
associative, composing on the right with F maintains equivalence. Therefore:

(F ∗ F ) ∗ F ∼ (F−1 ∗ F−1) ∗ F
1 ∗ F ∼ F−1 ∗ (F−1 ∗ F )

F ∼ F−1

Therefore, A is ambiguous. QED.
Certainly the class group structure is interesting, but it is now possible to return to the

problem from the Morrison-Brillhart algorithm of Example 13 withQ3 = 3, soQ6 = 9 doesn’t
provide a nontrivial factor of N . The quick explanation is that if you square the quadratic
form with first coefficient Q3, you obtain the quadratic form with first coefficient Q6. Since
the principal cycle is closed under composition, it seems as though, and perhaps would be
convenient if, the forms in the principal cycle formed a group. However, the problem of
reduction prevents this:

Example 15 Consider the quadratic form F = (36, 70,−3), with determinant 4 · 1333.
Compare (F ∗ F ) ∗ F , with F ∗ F ∗ F , where the difference is that in the first the result is
reduced after the first composition. F ∗ F = (324,−38,−3) and the very next adjacent form
(−3, 68, 59), is reduced. F ∗ (−3, 68, 59) = (−12, 70, 9), which is already reduced. However,
without reduction F ∗ F ∗ F = F ∗ (324,−38,−3) = (729, 448,−348). When this is reduced,
the first reduced form found, after 2 steps, is (9, 56,−61).

Therefore, the principal cycle, with the operation being composition followed by reduction,
doesn’t even meet the requirements for being power associative. However, the observation
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that the two results are adjacent forms, and that the second reduction took one step longer,
prompts us to dig a little deeper.

Understanding this requires what Shanks referred to as infrastructure distance. For
m < n, and for xi ∈ T, the terms in the continued fraction in (A.5), define

DF(xm, xn) = log(
n∏

k=m+1

xk) (A.15)

Lenstra [15] adds a term of 1
2
log(Qn/Qm) to this, with the effect that the resulting

formulas are slightly simplified but the proofs are more complicated and less intuitive. This
definition is used by Williams in [32].

Since the quadratic forms are cyclic, in order for the distance between two forms to be
measured consistently, it must be considered modulo the distance around the principal cycle.

Definition 4 Let π be the period of the principal cycle. The regulator R of the class group
is the distance around the principal cycle, that is,

R = DF(F0, Fπ) = D(1, Fπ)

Therefore, distance must be considered modulo R, so that DF is a map from pairs of forms
to the interval [0, R) ∈ R. The addition of two distances must be reduced modulo R as
necessary.

Further analysis of this distance will require two more tools: ideals and lattices. In order
to relate to continued fractions, the ideals will be in Z[

√
N ] = {a+ b

√
N : a, b ∈ Z} and the

lattices will be in Q(
√
N) = {a+ b

√
N : a, b ∈ Q}where N is a non-square positive integer.

Remark: The ideals in Z[
√
N ] typically correspond only to quadratic forms of discrimi-

nant 4N . Note that if N ≡ 1 (mod 4), then Z[
√
N ] is not the ring of integers for Q(

√
N).

For N ≡ 1 (mod 4), an analysis of ideals in Z[
√

N+1
2

] is also interesting, but will be avoided
in the interest of simplicity. Quadratic forms of discriminant N ≡ 1 (mod 4) may be related
to ideals in Z[

√
N ] via first multiplying by 2 to obtain quadratic forms of discriminant 4N .

5 Ideals

For ξ ∈ Q(
√
N), let ξ refer to the conjugate of ξ (i.e. 1 +

√
3 = 1−√3).

The norm of a number in Q(
√
N) is N (ξ) = ξξ ∈ Q.

To simplify notation, the symbols H, I, J , and K will consistently be ideals, u and v
will be elements of ideals, α and β will be elements of Z[

√
N ], ξ and ζ will be elements of

Q(
√
N), and L will be a lattice.

Our definition of an ideal is the same as in any other commutative ring with identity:

Definition 5 A subset I of a ring R is an ideal if for u, v ∈ I, u ± v ∈ I and for α ∈ R,
u · α ∈ I, that is I is closed under addition and multiplication by an element of R. Define
L(I) to be the least positive rational integer in I.
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Describing ideals will require the notation for the lattice generated by a set. If

α1, α2, ..., αk ∈ Z[
√
N ],

denote8 the lattice generated by these as

[α1, α2, ..., αk] = {
k∑

i=1

niαi : ni ∈ Z} (A.16)

Lemma 8 identifies necessary and sufficient conditions for a set in Z[
√
N ] to be an ideal.

Lemma 8 For Q, s,N, P ∈ Z, N non-square and positive, [Q, s
√
N + P ] is an ideal of the

ring Z[
√
N ] if and only if sQ | N (s

√
N + P ), s | Q, and s | P .

Proof: Assume that I = [Q, s
√
N + P ] is an ideal of Z[

√
N ]. Then, choosing α =

P − s
√
N , N (s

√
N + P ) ∈ I. Since this is an integer, Q | N (s

√
N + P ). Choosing

α =
√
N , Q

√
N ∈ I. Therefore, s | Q. Since Q | N (s

√
N + P ), this also implies that s | P .

Therefore, α could have been chosen α = P/s − √N so that Q | N (s
√
N + P )/s, so that

sQ | N (s
√
N + P ).

Conversely, let I = [Q, s
√
N + P ] and assume that sQ | N (s

√
N + P ), s | Q, and s | P .

Closure under addition is trivial. To see that I is closed under multiplication by an element
of Z[

√
N ], one need only consider multiplication by 1 and

√
N , since they form a basis for

Z[
√
N ]. Multiplication by 1 is trivial. For

√
N ,

Q
√
N =

Q

s
(s
√
N + P )− P

s
Q

and Q/s and −P/s are integers. Also,

(s
√
N + P )

√
N = sN + P

√
N =

P

s
(s
√
N + P ) + (

−P 2 + s2N

sQ
)Q

and P
s

and (−P 2+s2N
sQ

) are integers. QED

If s = 1, an ideal is primitive. Since s | P and s | Q, ideals that are not primitive will
often be written (s)[Q,

√
N + P ]. Let I be the set of all primitive ideals.

Represented in the form I = [Q,
√
N + P ], it is clear that |Q| is the smallest positive

rational integer in I. Define

L(I) = min{I ∩ Z+} (A.17)

At this point, it is possible to define a correspondance between quadratic forms (of
discriminant ∆ ≡ 0 (mod 4)) and ideals by:

8Observe the difference between the use of [...] here and in §2. This expression is completely unrelated to
rational approximations.
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ΦF,I(F (x, y) = Ax2 +Bxy + Cy2) = [A,

√
(
B

2
)2 − AC +

B

2
] (A.18)

ΦI,F([Q,
√
N + P ]) = F (x, y) = Qx2 + 2Pxy + (

P 2 −N
Q

)y2 (A.18′)

and define a reduced ideal as an ideal corresponding to a reduced quadratic form. Note that
∆ = 4N .

For example, the quadratic form (15, 2 · 12,−1) corresponds to the ideal [15,
√

159 + 12].
The one potential problem that immediately becomes apparent is that while [15,

√
159 + 12]

and [−15,
√

159 + 12] are the same ideal, (15, 2 · 12,−1) and (−15, 2 · 12, 1) are different
quadratic forms. However, it is apparent that the negative sign is merely carried through
composition without affecting the computations. Since each of these forms is in the same
location within its respective cycle, this difference will not be important to this investigation
of composition and distance.

ΦT,F and ΦF,I may be combined to obtain

ΦT,I(
Q√
N − P ) = [Q,

√
N − P ]

and ΦI,T is defined in the related obvious way.
If A = [αi] and B = [βi], i = 1, 2, 3..., d, then it is clear that A = B if and only if there

exists a d× d matrix M with determinant ±1 such that:

〈αi〉 = M〈βi〉
where 〈αi〉 and 〈βi〉 are vectors.

For these purposes, the most important operation with ideals is their multiplication.
Multiplication is defined by

[αi] · [βj] = [αiβj]

For example,

I = [15,
√

159 + 12] · [10,
√

159 + 13] = [150, 10
√

159 + 120, 15
√

159 + 195, 315 + 25
√

159]

The 4th component is the sum of the 2nd and 3rd, so it is unnecessary for describing the
ideal.

Applying the matrix




1 0 0
0 1 0
0 −1 1
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which has determinant 1, subtracts the 2nd component from the third to obtain

I = [150, 10
√

159 + 120, 5
√

159 + 75]

The matrix, with determinant 1,




1 0 0
0 1 −2
0 0 1




will subtract twice the 3rd component from the 2nd to obtain

I = [150,−30, 5
√

159 + 75]

Here the 1st component is a multiple of the 2nd and is thus unnecessary. The answer is
simplified to obtain

I = [30, 5
√

159 + 75] = 5[6,
√

159 + 15]

The process of multiplying ideals can be greatly simplified by several well-known formu-
lae9 [18].

Theorem 9 Let I = [Q,
√
N+P ] and J = [Q′,

√
N+P ′] be ideals of Q

√
N . Let C = N−P 2

Q
,

C ′ = N−(P ′)2
Q′ . If gcd(Q,P,C) = gcd(Q′, P ′, C ′) = 1, then I · J = s[q,

√
N + p], where

s = gcd(Q,Q′, P + P ′) (A.19)

h = gcd(Q,Q′, C, C ′, 2) (A.20)

q = hQQ′/s2 (A.21)

p ≡ P (mod Q/s) (A.22)

p ≡ P ′ (mod Q′/s) (A.23)

(P + P ′)p ≡ N + PP ′ (mod QQ′/s) (A.24)

Proof10:
Consider the product:

I · J = [QQ′, Q
√
N +QP ′, Q′

√
N +Q′P,N + PP ′ + (P + P ′)

√
N ] (A.25)

The smallest integer in I · J may be found by considering the smallest integers that may
be produced taking these elements pair-wise.

9In [18], (A.24) is stated as (P − p)(P ′ − p) ≡ n + tp + p2 (mod QQ′/s), but in this case t = 0 and
n = −N .

10Some of the arguments were taken from Buell’s proof in [2] concerning composition of quadratic forms.
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L(I · J) = gcd(QQ′, lcm(Q,Q′)(P − P ′), lcm(Q,P + P ′)Q′C ′

P + P ′
,
lcm(Q′, P + P ′)QC

P + P ′
)

Let s = gcd(Q,Q′, P + P ′), h = gcd(Q,Q′, C, C ′, 2), w = hQQ′/s. Let f 6= 2 be a prime.
Let a, b, c, d, e, k be the largest possible integers such that fa | Q, f b | Q′, f c | (P + P ′),
fd | C, f e | C ′, fk | (P − P ′). Then fa+b ‖ QQ′, fmax(a,b)+k ‖ lcm(Q,Q′)(P − P ′),
fmax(a,c)+b+e−c ‖ lcm(Q,P+P ′)Q′C′

P+P ′ , and fmax(b,c)+a+d−c ‖ lcm(Q′,P+P ′)QC
P+P ′ ).

The following analysis proves that if f 6= 2, the maximum exponent of f in L(I · J)
is a + b − min(a, b, c) while if h = 2, then the maximum exponent of 2 in L(I · J) is
a + b + 1 − min(a, b, c), while if h = 1, then the maximum exponent of f in L(I · J) is
a + b − min(a, b, c). As this is broken in several different cases, an outline of the proof is
helpful:

1) a = 0 or b = 0 or c = 0
2) a 6= 0,b 6= 0, and c 6= 0

2.1) f 6= 2
2.1.1) a+ d 6= b+ e

f | (P − P ′)
f - (P − P ′)

2.1.2) a+ d = b+ e
f | (P − P ′)
f - (P − P ′)

2.2) f = 2
2.2.1) a+ d 6= b+ e

c > 1, k > 1
c > 1, k ≤ 1
c = 1

2.2.2) a+ d = b+ e
c > 1, k > 1
c = 1
k = 1

Case 1) If a = 0, then max(a, c) + b + e − c = b + e ≥ b, max(b, c) + a + d − c ≥ b and

a+ b = b, so the maximum exponent for f in L(I · J) is b = a+ b−min(a, b, c). Similarly, if

b = 0, then the maximum exponent is a = a+ b−min(a, b, c).

Assume c = 0. fa+d ‖ QC = N − P 2 and f b+e ‖ Q′C ′ = N − (P ′)2, subtracting,

fmin(a+d,b+e) | (P 2 − (P ′)2) = (P + P ′)(P − P ′). Since c = 0, then fmin(a+d,b+e) | (P − P ′).
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Therefore, fmax(a,b)+min(a+d,b+e) | lcm(Q,Q′)(P−P ′). However, max(a, b)+min(a+d, b+e) ≥
max(a, b) + min(a, b) = a+ b. Therefore, the maximum exponent for f in L(I · J) is

min(a+ b,max(a, c) + b+ e− c,max(b, c) + a+ d− c) = min(a+ b, a+ b+ e, a+ b+ d)

= a+ b = a+ b−min(a, b, c)

Case 2.1.1) Assume c 6= 0, f 6= 2, and a+ d 6= b+ e. Then, fmin(a+d,b+e) ‖ (P 2− (P ′)2) =

(P + P ′)(P − P ′). If f | (P − P ′), then f | 2P and f | 2P ′. Since f 6= 2, this gives f | P ,

f | P ′. Then, d = e = 0. Also, c ≤ min(a, b). Then, the maximum exponent for f in L(I ·J)

is

min(a+ b,max(a, b) + min(a, b)− c,max(a, c) + b− c,max(b, c) + a− c) =

a+ b− c = a+ b−min(a, b, c)

If f - (P −P ′) then c = min(a+ d, b+ d) and the maximum exponent for f in L(I · J) is

min(a+ b,max(a, b),max(a, c) + b+ e− c,max(b, c) + a+ d− c)

If a = min(a, b, c), then this is min(b, c+b+e−c,max(b, c)+a+d−c) = b = a+b−min(a, b, c).

The case is similar if b = min(a, b, c). If c = min(a, b, c), then since c = min(a + d, b + e),

this gives c = min(a, b). Then the maximum exponent is

min(max(a, b), a+b+e−c, b+a+d−c) = max(a, b) = a+b−min(a, b) = a+b−min(a, b, c)

Case 2.1.2) Assume c 6= 0, f 6= 2, but a + d = b + e. As before, if f | (P − P ′),

then d = e = 0. In this case also a = b. Assume c ≤ a. Note that fa−c | (P − P ′) and

53



max(a, b) + min(a+ d, b+ e)− c = a+ b− c. Then the maximum exponent is

min(a+ b,max(a, c) + b− c,max(b, c) + a− c) = a+ b− c = a+ b−min(a, b, c).

Alternately, assume c > a. Then for some k, fk ‖ (P − P ′). The maximum exponent is

min(a+ b,max(a, b) + k, b,max(b, c) + a− c) = b = a+ b− a = a+ b−min(a, b, c)

Conversely, assume f - (P − P ′). Then c ≥ a+ d = b+ e and the maximum exponent is

min(a+ b,max(a, b),max(a, c) + b+ e− c,max(b, c) + a+ d− c) = min(max(a, b), a+ d)

= max(a, b) = a+ b−min(a, b) = a+ b−min(a, b, c)

Case 2.2.1) Let f = 2. Assume a + d 6= b + e. Then 2min(c,k) ‖ 2P and 2min(c,k) ‖ 2P ′, so

that 2min(c,k)−1 ‖ P, P ′. If c > 1 and k > 1, then d = e = 0 and as before the largest exponent

is a+ b−min(a, b, c). Assume c > 1, k ≤ 1. Then k = 1 and c = min(a+ d, b+ e)− 1. The

largest exponent is then

min(a+ b,max(a, b) + 1,max(a, c) + b+ e− c,max(b, c) + a+ d− c)

If a ≤ min(b, c) this reduces to b+min(e, 1) = a+ b+min(e, 1)−min(a, b, c). c+1 ≤ a+d ≤
c + d, so d ≥ 1. Note that if e ≥ 1 then this is a special case and h = 2. If e = 0, it is the

same as before. The cases when b ≤ min(a, c) are similar.

If c ≤ min(a, b), this exponent is min(max(a, b)+1, a+b+e−c, b+a+d−c). Without loss

of generality, assume a+ d > b+ e so that c = a+ d− 1 ≥ c+ d− 1, so that d = 1 and a = c.

Then the exponent is min(b+1, b+e, b+d) = b+min(1, e, d) = a+b+min(1, e, d)−min(a, b, c).

Note again that if e ≥ 1 and d ≥ 1, then this is the special case where h = 2. Otherwise, it
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is the same as before.

Assume c = 1. Then k ≥ 1. Then the exponent is

min(a+ b,max(a, b) + min(a+ d, b+ e)− 1, a+ b+ e− 1, a+ b+ d− 1).

If d = 0 or e = 0, h = 1 and this is a + b − 1 = a + b −min(a, b, c). Otherwise, h = 2 and

the exponent is a+ b = a+ b+ 1−min(a, b, c).

Case 2.2.2) Lastly, assume that c 6= 0 but a + d = b + e. For some k, 2k ‖ (P − P ′).

c + k ≥ a + d. If c > 1 and k > 1, then d = e = 0, a = b. The exponent is then

min(2a, a+ k,max(a, c) + b− c). If c > a, this is min(2a, a+ k, a) = a = a+ b−min(a, b, c).

If c ≤ a, the exponent is min(2a, a+ k, 2a− c) = 2a− c = a+ b−min(a, b, c).

Alternately, if c = 1, then k ≥ a+ d− 1 and the exponent is

min(a+ b,max(a, b) + k, a+ b+ e− 1, b+ a+ d− 1) = min(a+ b, a+ b+ e− 1, a+ b+ d− 1).

If e > 0 and d > 0, h = 2 and this exponent is a + b = a + b + 1 −min(a, b, c). If e = 0 or

d = 0, h = 1 and this is a+ b− 1 = a+ b−min(a, b, c).

If k = 1 then c ≥ 1 and specifically c ≥ a + d − 1 = b + e − 1. If c ≤ min(a, b), then

d = e = 1 so that h = 2, c = a = b and the exponent is

min(2a, a+ 1) = a+ 1 = a+ b+ 1−min(a, b, c)

If a ≤ min(b, c), then d ≥ e and the exponent is

min(a+ b, b+ 1, b+ e,max(b, c) + a+ d− c) = min(b+ 1, b+ e)

If e ≥ 1, then d ≥ e ≥ 1, so h = 2 and in this case the exponent is b+1 = a+b+1−min(a, b, c).
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If e = 0, h = 1 and in this case the exponent is b = a+ b−min(a, b, c).

Therefore,

L(I · J) = hQQ′/s

so that for f 6= 2, the highest exponent is a + b − min(a, b, c) and for f = 2, the highest

exponent is a+ b−min(a, b, c) if h = 1 and a+ b+ 1−min(a, b, c) if h = 2. Note that this

is still divisible by s. After that s is factored out, the result is q = hQQ′/s2.

There are integers t, u, and v such that tQ + uQ′ + v(P + P ′) = s. First, consider

divisability by s. This is trivial for every term except N + PP ′. By the definition of s,

P + P ′ ≡ 0 (mod s)

P ′ ≡ −P (mod s)

PP ′ ≡ −P 2 (mod s)

N + PP ′ ≡ N − P 2 (mod s)

and since s | Q and Q | (N − P 2), s | N + PP ′.

The linear combination of the last three elements with coefficients t, u, and v respectively

is:

s
√
N + tQP ′ + uQ′P + v(N + PP ′)

so that it is evident that after s is factored out, the remaining ideal is primitive. Since this is

the element of I · J with the smallest coefficient of
√
N , clearly p = t(Q/s)P ′ + u(Q′/s)P +

v(N + PP ′)/s, modulo L(I · J). Then,

p = t(Q/s)P ′ + (s− tQ− v(P + P ′))P/s+ v(N + PP ′)/s

≡ P + v(N − P 2)/s (mod Q/s)

≡ P (mod Q/s)
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since Q | (N − P 2). By symmetric arguments, p ≡ P ′ (mod Q′/s).

To prove (A.24), consider:

(P + P ′)sp = (P + P ′)(tQP ′ + uQ′P + v(N + PP ′)

= (P + P ′)(tQP ′ + uQ′P ) + (P + P ′)(N + PP ′)v

= (P + P ′)(tQP ′ + uQ′P ) + (s− tQ− uQ′)(N + PP ′)

= s(N + PP ′) + tQ((P ′)2 −D) + uQ′(P 2 −N)

≡ s(N + PP ′) (mod QQ′)

Therefore, (P + P ′)p ≡ N + PP ′ (mod QQ′/s). QED

Observe that when h = 1 (A.21) could be restated as

L(I · J) = L(I)L(J)/s2 (A.26)

remembering that L(I) is defined as the smallest positive rational integer in I. This equation

is proven in [32] and will be useful later.

Also observe that for h = 1, the equations describing the product of two ideals correspond

exactly to the composition of two quadratic forms. Shanks notes this in [28]. Therefore, the

equations concerning distance and multiplication of ideals will correspond to distance and

composition of quadratic forms.

The case when h = 2 connects composition of quadratic forms of discriminant ≡ 1

(mod 4) to multiplication of ideals. If F and G are two quadratic forms with discriminant

N ≡ 1 (mod 4), then 2F and 2G have discriminat 4N and correspond to ideals I2F and I2G

in Z[
√
N ]. Multiplying, h = 2 and I2F · I2G = I2(F∗G). Therefore, although this case will

not be considered further, it is readily seen that the distance formulas derived from ideals in

Z[
√
N ] will still correspond to composition of quadratic forms of discriminant ≡ 1 (mod 4).
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6 Lattices

Consider lattices in Q(
√
N)×Q(

√
N). Define L as the set of all lattices in Q(

√
N)×Q(

√
N).

Define the map M : Q(
√
N)→ Q(

√
N)×Q(

√
N) by

M(ξ) = 〈ξ, ξ〉

Multiplication in Q(
√
N) × Q(

√
N) is defined componentwise, that is, 〈ξ, ξ′〉 · 〈ζ, ζ ′〉 =

〈ξζ, ξ′ζ ′〉, so that it is clear that M is homomorphic and one-to-one.

Distance will relate to a concept called a minimum:

Definition 6 For a vector v = 〈v1, v2, ...vd〉, the normed body of v, R(v) is the set

R(v) = {〈x1, x2, ...xd〉 : xi ∈ R, |xi| < |vi|, i = 1, 2, ...d}

Abusing notation, denote R(ξ) = R(〈ξ, ξ〉).
A number ξ (or actually the corresponding vector) is a minimum of L if R(ξ)∩L = {0},

where 0 is the vector 〈0, 0〉.
A lattice L is reduced if 1 ∈ L and 1 is a minimum.

For this case with d = 2, the normed body is a rectangle in R2. Note that for ξ ∈ Q(
√
N)

the normed body R(ξ) has area equal to four times the absolute value of the norm |N (ξ)|.
To avoid unnecessary generality, this investigation will focus specifically on the lattices

corresponding to ideals. Specifically, for the primitive ideal I = [Q,
√
N + P ], define the

associated lattice containing 1 in Q(
√
N) as LI = [1, (

√
N + P )/Q].

Conversely, to each lattice containing 1 in Q(
√
N) there is an associated primitive lattice

(which may or may not be an ideal) in Z[
√
N ]. Equation (A.17) defined the function L. In

a similar fashion, for a lattice L, define
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L(L) = min{n ∈ Z+ : nL ⊂ Z[
√
N ]} (A.27)

Then if L(L)L is an ideal of Z[
√
N ] it is the primitive ideal associated to a lattice L. Note

that if an ideal I is associated to a lattice LI , then L(I) = L(LI). Define

ΦI,L([Q,
√
N + P ]) = [1, (

√
N + P )/Q]

and

ΦL,I(L) = L(L)L

Note that for some lattices L, ΦL,I(L) may not actually be an ideal. Lemma 9 provides

conditions for it to be an ideal sufficient for this analysis:

Lemma 9 Let I be a primitive ideal and let L = ΦI,L(I). If L′ is a lattice with basis {1, ξ}
and for some θ, θL′ = L, then J = ΦL,I(L) is a primitive ideal and

(L(I)θ)J = (L(J))I

Proof: Let I = [Q,
√
N + P ]. Then L = [1, (

√
N + P )/Q]. The statement that θL′ = L

requires that

θ




1

ξ


 = T




1

(
√
N + P )/Q




where T is a 2 × 2 matrix with determinant ±1. Multiplying by L(I) = L(L) = Q and

L(J) = L(L′):

Qθ




L(L′)
L(L′)ξ


 = L(L′)T




Q

(
√
N + P )
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so that (L(I)θ)J = (L(J))I. Therefore, J is an ideal. It is primitive by the definition of

ΦL,I. QED

For an example of minima, consider the lattice [1,
√

159−12]. R(1) is a square with sides

of length 2 centered at the origin and a simple graph demonstrates that 0 is the only point

in the lattice and contained in this square. Therefore 1 is a minimum.
√

159 − 12 is also a

minimum. R(
√

159 + 12) is a narrower and taller rectangle also centered at the origin.

Given two minima, it is important to be able to determine whether or not there is another

minimum between them. In vector format, if 〈x1, y1〉 and 〈x2, y2〉 are minima with |x1| > |x2|
and |y1| < |y2|, these two minima are adjacent if there does not exist another minima 〈x3, y3〉
such that |x2| < |x3| < |x1| and |y1| < |y3| < |y2|.

Voronoi developed a method (and a theorem) concerning adjacent minima ([4], [32]).

Theorem 10 Let L be a lattice with {ξ, ζ} as a basis, where ξ, ζ ∈ Q(
√
N) and suppose that

ζ > ξ > 0. Then ζ and ξ are adjacent minima of L if and only if |ξ| > |ζ| and ζξ < 0.

Proof: Assume ξ and ζ are adjacent minima. Since they are both minima, |ξ| > |ζ|, or

else ζ would not be a minima. Also 0 < ζ − ξ < ζ. Since ζ is a minima, this requires that

|ζ − ξ| > |ζ|. If ζ and ξ had the same sign, this would not be possible. Therefore, ζξ < 0.

Conversely, assume that |ξ| > |ζ| and ζξ < 0. Assume that ξ is not a minimum of L.

Then there exists some ω ∈ Q(
√
N) such that |ω| < ξ and |ω| < |ξ|. Since ω = aξ + bζ for

some a, b ∈ Z, |aξ+bζ| < ξ and |aξ+bζ| < |ξ|. If ab = 0, then either a = 0 or b = 0. If a = 0,

then the second statement contradicts the hypothesis. If b = 0, then the first statement gives

ξ < ξ, clearly false. However, if ab > 0 then |aξ + bζ| > ξ and if ab < 0, then since ζξ < 0,

|aξ + bζ| > |ξ|. Therefore, ξ must be a minima. By similar reasoning, ζ must be a minima.

Concerning adjacency, assume that there is another minima ω between ξ and ζ. Since

ω = aξ + bζ for some a, b ∈ Z, ξ < |aξ + bζ| < ζ and |ζ| < |aξ + bζ| < |ξ|. Since ζ > ξ > 0,

the first statement requires that b = 0 and then the second statement simplifies to |a| < 1,
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requiring that a = 0 and providing a contradiction. Therefore, ξ and ζ are adjacent minima.

QED

From the previous example, it is now possible to check that ξ = 1 and ζ =
√

159 + 12

are indeed adjacent minima.

The idea that will actually connect to continued fractions (and distance) is the search for

a sequence of adjacent minima. This sequence is formed by relating different lattices. The

following Lemmas are due to Williams [32].

Lemma 10 Let L and L′ be reduced lattices. If ξL′ = L, then ξ is a minimum of L.

Proof: Since 1 ∈ L′, ξ ∈ L. If ξ is not a minimum of L, then there exists a ζ ∈ L suh

that ζ 6= 0 and |ζ| < |ξ| and |ζ| < |ξ|. Let β = ζ/ξ, so that β ∈ L′. |β| = |ζ/ξ| < 1 and

|β| = |ζ/ξ| < 1, contradicting the fact that L′ is reduced. Therefore, ξ is a minimum of L.

QED

Now consider the converse of this statement. Note that bxc denotes the floor of x.

Lemma 11 Let L = [1, ξ], where 1 and ξ are adjacent minima of L with 1 > ξ > 0. Let

L′ = (1/ξ)L. Then L′ is a reduced lattice.

Proof: L′ = (1/ξ)[1, ξ] = [1/ξ, 1] = [1/ξ − b1/ξc, 1], so that 1 ∈ L′. It is sufficient to

show that 1 and ξ′ = 1/ξ−b1/ξc are adjacent minima. First, 1 and ξ′ are a basis for L′ and

1 > ξ′ > 0. Since 0 < ξ < 1, b1/ξc > 1. Since ξ < 0, ξ′ = 1/ξ−b1/ξc < 0−1 = −1. Thereby

satisfying both the requirement that ξ
′ · 1 < 0 and the requirement that |ξ′| > 1. Therefore,

by Theorem 10, 1 and ξ′ are adjacent minima of L′ and thus L′ is a reduced lattice. QED

Actually, these proofs provide a bit more by actually finding the minimum adjacent to 1

in the new lattice. The next Lemma makes use of this minimum [32]:

Lemma 12 Let L, L′, ξ, and ξ′ be as above. Let ζ be the minimum adjacent to ξ other than

1 in L. Then ζ = ξξ′.
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Proof: ξξ′ = ξ(1/ξ−b1/ξc) = 1−ξb1/ξc, so that [ξ, ξξ′] is a basis for L. Since 1 > ξ′ > 0,

ξ > ξξ′ > 0. Since |ξ′| > 1, |ξξ′| > |ξ|. Since ξ
′
< 0, ξ · ξξ′ = (ξ)2ξ′ < 0. Therefore, by

Theorem 10, ξ and ξξ′ are adjacent minima. Since ξξ′ 6= 1, ζ = ξξ′. QED

Observe that by a similar process, one could find a reduced lattice L′′ = 1/ξ′L′, etc. Then

L′′ = 1/(ξξ′)L. To generalize, define ξ = ξ1 and L = L1 and this is a sequence of reduced

lattices and their minima. A chain of adjacent minima of L1 may be defined by

θn =
n−1∏
i=1

ξi (A.28)

and then

θnLn = L1 (A.29)

Since each Ln is a reduced lattice, by Lemma 10 each θn is a minimum of L1.

Although it is not true in higher dimensions, it is fairly trivial in 2-d that this chain of

adjacent minima provides a complete (although infinite) list of the minima with x-coordinate

between 0 and 1.

Lemma 13 Let 〈φ, φ〉 be a minimum of a lattice L, with 0 < φ < 1. Then for some n,

φ = θn, where θn is defined by equation (A.28)

Define distance in terms of this chain of minima by

DL(Ln,Lm) = log(θn/θm) (A.30)

It will become readily apparent that the subscript L is unnecessary, but it provides clarity

for now. Before continuing it is appropriate to provide an example of these concepts. First,

as a reference, consider the steps for the continued fraction expansion of
√

159− 12 and the

quadratic form distances DF covered to the end of each step:
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x1 = 1√
159−12

=
√

159+12
15

= 1 +
√

159−3
15

, DF(F0, F1) = log(
√

159+12
15

)

x2 = 15√
159−3

=
√

159+3
10

= 1 +
√

159−7
10

, DF(F0, F2) = log(
√

159+13
10

)

x3 = 10√
159−7

=
√

159+7
11

= 1 +
√

159−4
11

, DF(F0, F3) = log(2
√

159+25
11

)

x4 = 11√
159−4

=
√

159+4
13

= 1 +
√

159−9
13

, DF(F0, F4) = log(3
√

159+38
13

)

x5 = 13√
159−9

=
√

159+9
6

= 3 +
√

159−9
6

, DF(F0, F5) = log(5
√

159+63
6

).

The continued fraction corresponds to quadratic forms which correspond to ideals, which

are associated with lattices that contain 1. In this case, the lattice associated with x1 is

L1 = [1, 1/x1] = [1,
√

159− 12] and 1/x1 is a minimum adjacent to 1 in L1. From here:

L2 = 1√
159−12

L1 = [ 1√
159−12

, 1] = [
√

159+12
15

, 1] = [1,
√

159−3
15

] = [1, 1/x2]

L3 = 15√
159−3

L2 = [ 15√
159−3

, 1] = [
√

159+3
10

, 1] = [1,
√

159−7
10

] = [1, 1/x3]

...

and it is apparent that this same pattern of correspondance will continue, that is

ΦT,L(xn) = ΦT,I(ΦI,L(xn)) = [1, 1/xn] = Ln (A.31)

from which it is also apparent that the sequences of lattices will be periodic.

Computing equation (A.28), for example, θ3 = (
√

159− 12)(
√

159−3
15

) = 13−√159. With

θ1 = 1,

D(L1,L3) = log(1/(13−
√

159)) = log((
√

159 + 13)/10)

It is readily apparent that the definition of distances in lattices corresponds to the defi-

nition given for quadratic forms. Note that these distances must still be considered modulo

R, the regulator, since the sequence of lattices is still cyclic.
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7 The Generalized Distance Formula

Going back to ideals, note that if I1 = L(L1)L1 and In = L(Ln)Ln is another ideal corre-

sponding to a lattice later in the same sequence, then

θnLn = L1

L(L1)L(Ln)θnLn = L(L1)L(Ln)L1

(L(L1)θn)In = (L(Ln)I1 (A.32)

where once again, the distance (this time between ideals) is given by D(I1, In) = − log(θn).

Now, this definition of distance is well and good for reduced ideals, but as of yet, it hasn’t

been applied it to non-reduced ideals. To relate the definitions of reduced lattices and

continued fractions observe that the definition of a reduced continued fraction implies that

for a term xi =
√

N+Pi−1

Qi
, being reduced equates to

√
N + Pi−1

Qi

> 1

0 <

√
N − Pi−1

Qi

< 1

so that it is clear that if Lx = [1, 1/x], then 1 and x are adjacent minima and the lattice

is reduced. The process of dealing with a non-reduced lattice correlates to the process of

reducing a continued fraction as demonstrated in the proof of Lemma 5. See [32] for a more

general Lemma.

Lemma 14 Let I be any primitive ideal in Z[
√
N ]. There exists a reduced ideal In and a

θn ∈ I such that
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(L(I)θn)In = (L(In))I (A.33)

Proof:

Let I = [Q,
√
N + P ]. Then the associated lattice is LI = [1,

√
N+P
Q

] = [1, ξ1]. If I is

reduced, In = I, u = L(I), and the proof is done. If I is not reduced, then LI is not reduced.

Without loss of generality, assume that 0 < ξ1 < 1 (since otherwise it would just have to

be reduced by an integer.). Let L2 = 1/ξ1LI = [1/ξ, 1] = [1, 1/ξ − b1/ξ − 1/2c]. Then

ξ1L2 = LI . Continuing in similar manner11, by Lemma 5 and the correspondance between

lattices and continued fractions for some n,ξn reduced, and thus Ln reduced. As in (A.28),

set

θn =
n−1∏
i=1

ξi

so that

θnLn = LI

Then (L(I)θn)In = (L(In)I. QED

Let I1, J1 be reduced primitive ideals. Let K1 be the primitive ideal found by multiplying

I1 and J1 and removing a factor and let s be the factor removed, so that (s)K1 = I1J1, s ∈ Z.

By Lemma 14 there exists a reduced ideal Kj and a λj ∈ K1 such that

(L(K1)λj)Kj = (L(Kj))K1 (A.34)

corresponding toD(K1, Kj) = − log(λj).

11Note that it is irrelevent whether or not the second components of the intermediate lattices are either
minima or adjacent to 1. Also note that, as in Lemma 5, the formula would change slightly when the
denominators get small.
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Let In ∼ I1 and Jm ∼ J1 and let H1 be the primitive ideal found by multiplying In and

Jm and removing a factor and let t be the factor removed, so that (t)H1 = InJm, t ∈ Z. By

Lemma 14 there exists a reduced ideal Hk and a ηk ∈ K1 such that

(L(H1)ηk)Hk = (L(Hk))H1 (A.35)

corresponding to D(H1, Hk) = − log(ηk).

Also, there exist minima µn and φm in the lattices corresponding to I1 and J1, respectively,

such that

(L(I1)µn)In = (L(In))I1 (A.36)

and

(L(J1)φm)Jm = (L(Jm))J1 (A.37)

corresponding to D(I1, In) = − log(µn) and D(J1, Jm) = − log(φm).

By combining (A.26) and (A.34)-(A.37):

(L(Hk))Kj =
(

L(Hk)L(Kj)

L(K1)λj

)
K1

=
(

L(Hk)L(Kj)

L(K1)λjs

)
I1J1

=
(

L(Hk)L(Kj)L(I1)L(J1)µnφm

L(K1)λjsL(In)L(Jm)

)
InJm

=
(

L(Hk)L(Kj)sµnφm

λjL(In)L(Jm)

)
InJm

=
(

L(Hk)L(Kj)sµnφmt

λjL(In)L(Jm)

)
H1

=
(

L(Hk)L(Kj)sµnφm

λjtL(H1)

)
H1

=
(

L(Kj)sµnφmηk

λjt

)
Hk

66



Set

ψ =
sµnφmηk

tλj

and then

(L(Kj)ψ)Hk = (L(Hk))Kj (A.38)

Since Kj and Hk are reduced, by Lemma 10 ψ is a minimum of the lattice LKj
, so that

for some n, ψ = θn. Therefore,

D(Kj, Hk) = − log(ψ) = − log(µn)− log(φm)− log(ηk) + log(λj)− log(s/t)

= D(I1, In) +D(J1, Jm) + ζ

where ζ = D(H1, Hj)−D(K1, Kj) + log(t/s) will be small compared to D(Kj, Hk) for m,n

large.

By the correspondance between multiplication of ideals and composition of quadratic

forms, this result may be restated in terms of forms:

Theorem 11 If F1 ∼ Fn are equivalent forms and G1 ∼ Gm are equivalent forms and Dρ,1

is the reduction distance for F1 ∗ G1 and Dρ,2 is the reduction distance for Fn ∗ Gm and s

and t are the factors cancelled in each respective composition, then

D(F1 ∗G1, Fn ∗Gm) = D(F1, Fn) +D(G1, Gn) + ζ

where ζ = Dρ,2 −Dρ,1 + log(t/s).

Example 13 from the Morrison-Brillhart algorithm is in the principal cycle. By Theorem

11 when a form F is composed with itself, the distance from 1 to F is roughly doublied,

d(1, F 2) = 2d(1, F ) + ζ. Therefore, the index is roughly doubled, since distance is roughly
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proportional to the difference in indices, so that F3 ∗ F3 = F6, and Q6 = 9 is the square of

Q3 = 3.

Since the square of any symmetry point has first coefficient 1, observe that if the distance

around some cycle were unrelated to the distance around the principal cycle, then this

result would be affected by which symmetry point this distance was referenced from. From

Definition 4 R = D(F0, Fπ) in the principal cycle. At this point, it is clear that the distance

in other cycles must be the same.

Lemma 15 Let A be a primitive amibiguous cycle with a period π. Then,

R = D(F0, Fπ)

Proof: Let {Fi} have period π and let F0 and Fπ/2 be the two symmetry points of A.

Then F0 ∗F0 = 1 = Fπ/2 ∗Fπ/2, with Dρ,1 = Dρ,2 = 0, s and t the respective first coefficients.

Therefore,

0 = D(F0 ∗ F0, Fπ/2 ∗ Fπ/2) = 2D(F0, Fπ/2) + log(t/s) = D(F0, Fπ)

where the 3rd step is obtained from the 2nd by the fact that the product in D(F0, Fπ/2)

includes the last denominator t and not the first denominator s.

Therefore, D(F0, Fπ) = nR. Considering composition of F0 with forms in the principal

cycle, clearly D(F0, Fπ) ≤ R, so that D(F0, Fπ) = R. QED

8 Square Forms Factorization (SQUFOF)

It’s not certain how much Shanks may have rigorously proven concerning distances, but based

on the understanding he had of distance and infrastructure, he was able to develop Square

Forms Factorization. A short example will demonstrate and explain the algorithm: let N =
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3193. Expanding the continued fraction (principal cycle), Q10 = 49. The quadratic form for

this is F = 49x2+58xy−48y2. Since 49 is a perfect square, 7x2+58xy−336y2, which reduces

with Dρ = 0 to G = 7x2 +100xy−99y2 is a quadratic form whose square is F . Therefore, by

Theorem 8, G is in a class of order 2 or 1, so that G is an ambiguous form, so that there are

two points of symmetry in its cycle. Since by Theorem 11, 2D(Gs, G) = D(1, F ) (mod R).

So D(Gs, G) = D(1, F )/2 (mod R/2). Since the two points of symmetry are R/2 away

from each other, this means that there is a symmetry point at distance D(1, F )/2 behind

G. Therefore, a point of symmetry may be found by reversing G and traveling this short

distance. Now if the coefficient at this symmetry point is ±1, then there would have been a

7 somewhere before F in the continued fraction expansion. If the coefficient is 2, then this

symmetry point could be composed with G to find 14 at an earlier point in the principle

cycle. Therefore, the symmetry point provides a nontrivial factor for N . In this case, after

6 steps it provides 31 as a factor of 3193.

The second phase of this algorithm can be made significantly (at least for larger numbers)

faster if the quadratic forms from the continued fraction expansion with indices that are

powers of 2 are saved. In this example, F = F10, so that G is about the 5th form in its

cycle12. The composition of G−1 with F4 and F1 is close and a simultaneous search in both

direction from there quickly finds the symmetry point. In this case, it is only necessary to

store log2 k forms for k steps, so that it is more efficient to check each square to see if it

works than to check each square root against the previous pseudo-squares to predict whether

it will work.

Formally, here is the algorithm for factoring N :

12Roughly, since in this case 5 ≈ 6.
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Q0 ← 1, P0 ← b
√
Nc, Q1 ← N − P 2

0

r ← b√Nc
while Qi 6= perfect square for some i even

bi ←
⌊

r+Pi−1

Qi

⌋

Pi ← biQi − Pi−1

Qi+1 ← Qi−1 + bi(Pi−1 − Pi)

if i = 2n for some n

Store (Qi, 2 · Pi) F0 = (
√
Qi, 2 · Pi−1,

P 2
i−1−N

Qi
)

Compose F0 with stored forms according to the

binary representation of i/2 and store result to F0.

F0 = (A,B,C)

Q0 ← |A|, P0 ← B/2, Q1 ← |C|
q0 ← Q1, p0 ← P0, q1 ← Q0

while Pi 6= Pi−1 and pi 6= pi−1

Apply same recursive formulas to (Q0, P0, Q1) and (q0, p0, q1)

If Pi = Pi−1, either Qi or Qi/2 is a nontrivial factor of N .

If pi = pi−1, either qi or qi/2 is a nontrivial factor of N .

Finding a perfect square that provides a factorization is the slowest part of the algorithm,

so the number of steps required to obtain this is a good measure of the total runtime. Let W

be the number of forms examined before a square for is found that provides a factorization.

In [29], Shanks states that for N having k distinct prime factors13,

E(W ) = ln(8)
2 +
√

2

2

4
√
N

2k − 2
.

13Shanks actually let N have k + 1 distinct prime factors, so the distance looks slightly different but is
equivalent.

70



Shanks did not provide a proof, and it actually wasn’t quite right for all N , but in 2004,

Jason Gower completed a runtime analysis and concluded:

Proposition 3 [8] Let N be square-free and have k distinct odd prime factors. Let W be

the number of forms that SQUFOF must examine before finding a square form that provides

a factorization. Then,

E(W ) ∼





2(
√

2+1) 4√N log 2
2k−2

ifN ≡ 1 (mod 4),

3(
√

2+2) 4√N log 2
2(2k−2)

ifN ≡ 2 or 3 (mod 4)
(A.39)

Note that for N ≡ 2 or 3 (mod 4), this is equivalent to Shanks estimate.

Therefore, Square Forms Factorization has an expected runtime of O( 4
√
N).
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Appendix B

Class Group Related Programs

Number Theory Functions

This first program, NumberTheory.mag, has all of the basic functions needed for compo-

sition of quadratic forms and cycling.

//NumberTheory.mag

//inv,d = inverse(A,base);

//Calculates modular inverses. Also handles if A,base not relatively prime

inverse := function(A,base)

d, inv := Xgcd(A,base);

if d ne 1 then

A := Floor(A/d);

_, inv := Xgcd(A,base);

end if;

return inv,d;

end function;

//Solves a system of congruence equations: Chinese Remainder Theorem

congruent := function(size,EQ)

soln := EQ[1];

prodSoFar := EQ[2];

for i := 2 to size do

cong := EQ[2*i-1];
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modu := Abs(EQ[2*i]);

inv,d := inverse(prodSoFar,modu);

if ((soln-cong) mod d) ne 0 then

return 0, false;

end if;

soln := soln+prodSoFar*inv*(cong-soln);

prodSoFar := prodSoFar*Floor(modu/d);

soln := soln mod prodSoFar;

end for;

return soln,true;

end function;

//Qform := [Q1,P1,Q2,b1], all positive,

//takes one step

cFracStep := function(formA,root)

formB := [];

formB[4] := Floor( (root+formA[2])/formA[3]);

formB[1] := formA[3];

formB[2] := formB[4]*formA[3]-formA[2];

formB[3] := formA[1]+(formA[2]-formB[2])*formB[4];

return formB;

end function;

//Determines if formA is reduced

goodForm := function(formA,root)

if (root le (formA[2]-1)) or (formA[2] le Abs(root+0.5-formA[3])) then

return false;

end if;

return true;

end function;

//Given that r is the sqrt(square) mod base, squares base and finds

//sqrt(square) mod base congruent to r.

CompSquare := function(r,square,base)

base := base*base;

if base eq 1 then

return r,true;

end if;

inv,d := inverse(r,base);
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if (square mod d) ne 0 then

return 0,false;

end if;

//In this project the only time d will be bigger than 2 is if d|N:

if 3 le d then

d;

return 0,false;

end if;

r := Floor(r + inv*square/d);

if IsOdd(r) then

r := r - base;

end if;

r := Floor(r/2) mod base;

return r,true;

end function;

//Reverses a quadratic form and takes a step so that the first coefficient is

//unchanged

reverse := function(formA,root)

saved := formA[3];

formA[3] := formA[1];

formA[1] := saved;

formA := cFracStep(formA,root);

return formA;

end function;

//reduce A; does not use A[3].

reduce := function(A,root,N)

b := Floor((root-A[2])/A[1]);

A[2] := A[2]+b*A[1];

A[3] := Floor((N-A[2]^2)/A[1]);

while (not goodForm(A,root)) do

A := cFracStep(A,root);

end while;

return A;

end function;
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//compose F with itself

squareF := function(A,root,N)

A[2] := A[2]*2;

D := 4*N;

d := Gcd(A[2],A[1]);

A[1] := A[1]/d;

if d ge 3 then

"Factor: ", d;

end if;

A[2] := CompSquare(A[2],D,A[1]);

A[1] := A[1]*A[1];

if IsOdd(A[2]) then

A[2] := A[2]+A[1];

end if;

A[2] := Floor(A[2]/2);

return reduce(A,root,N);

end function;

Xgcd3 := function(x,y,z)

d_xy,a,b := Xgcd(x,y);

d,a_xy,c := Xgcd(d_xy,z);

a := a*a_xy;

b := b*a_xy;

return d,a,b,c;

end function;

//Compose A*B, slighlty slower than A*A above

compose := function(A,B,root,N)

m,u,v,w := Xgcd3(A[1],B[1],A[2]+B[2]); //before 2* [2]’s, so no /2

A[2] := Floor((A[1]*B[2]*u+B[1]*A[2]*v+(A[2]*B[2]+N)*w)/m);

A[1] := Floor(A[1]*B[1]/m^2);

return reduce(A,root,N);

end function;
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Program for Testing a Square

FastReturn was the name Shanks gave to the variation that used composition to test a

perfect square quickly. This program provides the function that does this.

//FastReturn.mag

//returns bool,int: whether or not the form provides a factor, and

//potentially what the factor is

testF := function(A,saved,size,i,pow,r,root,N)

//Tell the user where a square was found.

"Square found at i=", i;

i := Floor(i/2);

size := size-1;

pow := pow/2;

//Reverse, then take the square root

A := reverse(A,root);

A[1] := r;

A := reduce(A,root,N);

//Use composition with quadratic forms saved from the process of getting

//to this square in order to get close to the desired symmetry point.

while size ge 1 do

if i ge pow then

i := i-pow;

A := compose(A,saved[size],root,N);

end if;

size := size-1;

pow := pow/2;

end while;

//Search in both directions for the symmetry point.

B := reverse(A,root);

BP := 1;

AP := 1;
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//If already at a symmetry point, stop.

if A[2] eq B[2] then

d := Gcd(A[1],N);

if d ge 2 then

return true,d;

else

return false,1;

end if;

end if;

//os keeps track of how much the symmetry point was missed by, just for curiosity.

os := 0;

//Cycle through each direction till a symmetry point is found. Usually pretty close.

while (A[2] ne AP) and (B[2] ne BP) do

AP := A[2];

BP := B[2];

A := cFracStep(A,root);

B := cFracStep(B,root);

os := os+1;

end while;

"Missed by", os;

//Determine which direction found the symmetry point and determine if it provides

//a factor.

if A[2] eq AP then

d := Gcd(A[1],N);

if d ge 2 then

return true,d;

else

return false,1;

end if;

end if;

"Overshot";

if B[2] eq BP then

d := Gcd(B[1],N);

if d ge 2 then

return true,d;

else
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return false,1;

end if;

end if;

end function;

Square Forms Factorization

This program defines the function SQFactor(N), which uses SQUFOF with Fast Return

to factor N.

//SQUFOF.mag

load "NumberTheory.mag";

load "FastReturn.mag";

SQFactor := function(N)

//If N is probably prime, quit.

if IsProbablePrime(N) then

return 0,0;

end if;

tim := Realtime();

//Set the precision to a higher level if necessary. Only affects Sqrt.

AssertAttribute(FldPr, "Precision", Floor(Log(N)/Log(10)));

root := Floor(Sqrt(N));

A := [1,root,N-root^2];

i := 1;

pow := 4;

saved := [];
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size := 1;

fail := 0;

t := false;

lastP := 0;

while not t do

//Store forms with indices that are powers of 2

if i eq pow then

saved[size] := A;

size := size+1;

pow := 2*pow;

end if;

//Return if a symmetry point is found.

if lastP eq A[2] then

d := Gcd(N,A[2]);

AssertAttribute(FldPr, "Precision", 28);

return d,Realtime(tim);

end if;

lastP := A[2];

A := cFracStep(A,root);

if lastP eq A[2] then

d := Gcd(N,A[2]);

AssertAttribute(FldPr, "Precision", 28);

return d,Realtime(tim);

end if;

lastP := A[2];

A := cFracStep(A,root);

//Every even step, check if the first coefficient is square.

t,r := IsSquare(A[1]);

if t then

t,f := testF(A,saved,size,i,pow,r,root,N);

if not t then

fail := fail+1;
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end if;

end if;

i := i+1;

//If the original symmetry point is found, quit.

if (A[1] eq 1) or (A[3] eq 1) then

f := 0;

t := true;

end if;

//If it fails more than 200 times, it’s probably better to

//multiply N by a constant and start over.

if fail ge 200 then

t := true;

f := 0;

end if;

end while;

AssertAttribute(FldPr, "Precision", 28);

return f,Realtime(tim);

end function;
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Appendix C

Parallel Programs Using MPI

This is a parallel implementation of Square Forms Factorization that uses composition to

break the cycle into segments for each processor to search.

//parSQUFOF.c

#include "mpi.h"

#include <stdio.h>

#include "NumberTheory.h" //C version of NumberTheory.mag above

#include "/usr/local/include/gmp.h"

#include "FastReturn.h" //C version of FastReturn.mag above

#include "gmpmpi.h" //Provides Send() and Recv() to send a segment from

//the master process to the slave processes.

int main(int argc, char *argv[])

{

//Flags for communications

const int STOP = 10;

const int finished = 11;

const int segSize = 25;

const int Npass1 = 12;

const int Npass2 = 13;

//Administrative variables

int myrank,i,np,flag,done;

81



//These are the large integers, and quadratic forms, used by this algorithm.

mpz_t N,root,firstBack;

struct form Start;

struct form back[segSize];

char *N_str;

int lengthN;

MPI_Status status;

//Initiate communications and obtain basic information.

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &np);

//The min of 2 is an idiot check, the max of 32 is to be polite.

if((np < 2) || (np > 32))

{

MPI_Finalize();

return 0;

}

done = 0;

mpz_init(N);

//The master process receives N from the user and sends it to the other processors.

if(myrank==0)

{

printf("N: \n");

mpz_inp_str(N,stdin,10);

lengthN = 1+mpz_sizeinbase(N,36);

N_str = malloc(lengthN*sizeof(char));

mpz_get_str(N_str,36,N);

for(i = 1; i<np; i++)

{

MPI_Send(&lengthN,1,MPI_INT,i,Npass1,MPI_COMM_WORLD);

MPI_Send(N_str,lengthN,MPI_CHAR,i,Npass2,MPI_COMM_WORLD);

}

free(N_str);

}

else
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{

MPI_Recv(&lengthN,1,MPI_INT,0,Npass1,MPI_COMM_WORLD,&status);

N_str = malloc(lengthN*sizeof(char));

MPI_Recv(N_str,lengthN,MPI_CHAR,0,Npass2,MPI_COMM_WORLD,&status);

mpz_set_str(N,N_str,36);

free(N_str);

}

//Calculate sqrt(N) and find the first quadratic form.

mpz_init(root);

mpz_sqrt(root,N);

mpz_init_set_ui(Start.Q0,1);

mpz_init_set(Start.P,root);

mpz_init_set(Start.Q1,N);

mpz_submul(Start.Q1,root,root);

mpz_init(Start.b);

//Prime the pump by stepping forward a few, already checking for squares.

mpz_init(firstBack);

for(i = 0; i<30; i++)

{

cFracStep(&(Start),root);

cFracStep(&(Start),root);

if(isSquare(Start.Q0,firstBack)&&testF(Start,back,Start,0,firstBack,root,N,&done))

{

mpz_clear(root);

mpz_clear(Start.Q0);

mpz_clear(Start.P);

mpz_clear(Start.Q1);

mpz_clear(Start.b);

mpz_clear(N);

MPI_Finalize();

return 0;

}

}

//Make big jumps by squaring the quadratic forms.

for(i = 0; i<segSize; i++)
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{

mpz_init_set(back[i].Q0,Start.Q0);

mpz_init_set(back[i].P,Start.P);

mpz_init_set(back[i].Q1,Start.Q1);

mpz_init(back[i].b);

compose(&Start,Start,Start,root,N);

}

if (myrank ==0) //Master process

{

int i;

int found[64];

MPI_Request waiting[64],stop[64];

struct segment Next;

struct form hIncrement,nextHstart;

//Prepare to recieve from the other processors.

for(i = 1; i<np; i++)

{

waiting[i] = 0;

MPI_Irecv(&found[i],1,MPI_INT,i,finished,MPI_COMM_WORLD,&waiting[i]);

}

//Initiate the required memory.

mpz_init_set(hIncrement.Q0,back[segSize-1].Q0);

mpz_init_set(hIncrement.P,back[segSize-1].P);

mpz_init_set(hIncrement.Q1,back[segSize-1].Q1);

mpz_init(hIncrement.b);

mpz_init_set(Next.start.Q0,back[0].Q0);

mpz_init_set(Next.start.P,back[0].P);

mpz_init_set(Next.start.Q1,back[0].Q1);

mpz_init(Next.start.b);

mpz_init_set(Next.end.Q0,Start.Q0);

mpz_init_set(Next.end.P,Start.P);

mpz_init_set(Next.end.Q1,Start.Q1);

mpz_init(Next.end.b);
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mpz_init_set(Next.halfStart.Q0,back[0].Q0);

mpz_init_set(Next.halfStart.P,back[0].P);

mpz_init_set(Next.halfStart.Q1,back[0].Q1);

mpz_init(Next.halfStart.b);

mpz_init_set(nextHstart.Q0,hIncrement.Q0);

mpz_init_set(nextHstart.P,hIncrement.P);

mpz_init_set(nextHstart.Q1,hIncrement.Q1);

mpz_init(nextHstart.b);

//Cycle through the processors, sending them a segment to search if they’re ready for it.

i = 1;

while(!done)

{

if(i>=np)

i = 1;

flag = 0;

MPI_Test(&waiting[i],&flag,&status);

if(flag)

{

if(found[i])

{

printf("Something found by rank %d\n",i);

done = found[i];

}

else

{

Send(Next,i);

MPI_Irecv(&found[i],1,MPI_INT,i,finished,MPI_COMM_WORLD,&waiting[i]);

ftof(&Next.start,Next.end);

ftof(&Next.halfStart,nextHstart);

compose(&nextHstart,nextHstart,hIncrement,root,N);

compose(&Next.end,nextHstart,nextHstart,root,N);

}

}

i++;

}

//When a factor has been found, cycle through to tell everyone.
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for(i=1; i<np; i++)

MPI_Isend(&done,1,MPI_INT,i,STOP,MPI_COMM_WORLD,&stop[i]);

//Clear the memory used.

mpz_clear(hIncrement.Q0); mpz_clear(hIncrement.P);

mpz_clear(hIncrement.Q1); mpz_clear(hIncrement.b);

mpz_clear(Next.start.Q0); mpz_clear(Next.start.P);

mpz_clear(Next.start.Q1); mpz_clear(Next.start.b);

mpz_clear(Next.end.Q0); mpz_clear(Next.end.P); mpz_clear(Next.end.Q1);

mpz_clear(Next.end.b);

mpz_clear(Next.halfStart.Q0); mpz_clear(Next.halfStart.P);

mpz_clear(Next.halfStart.Q1); mpz_clear(Next.halfStart.b);

mpz_clear(nextHstart.Q0); mpz_clear(nextHstart.P);

mpz_clear(nextHstart.Q1); mpz_clear(nextHstart.b);

//The master shouldn’t quit until all of the other processors have successfully gotten the word.

for(i=1; i<np; i++)

MPI_Wait(&stop[i],&status);

}

else

{

struct segment Mine;

MPI_Request last;

MPI_Request ready;

int index;

int lineStart;

int test,found = 0,end = 0;

//Initiate the required memory.

mpz_init(Mine.start.Q0); mpz_init(Mine.start.P); mpz_init(Mine.start.Q1);

mpz_init(Mine.start.b);

mpz_init(Mine.end.Q0); mpz_init(Mine.end.P); mpz_init(Mine.end.Q1);

mpz_init(Mine.end.b);

mpz_init(Mine.halfStart.Q0); mpz_init(Mine.halfStart.P);

mpz_init(Mine.halfStart.Q1); mpz_init(Mine.halfStart.b);

//Prepare to recieve the message that the job is done.

MPI_Irecv(&done,1,MPI_INT,0,STOP,MPI_COMM_WORLD,&last);
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//Keep doing this until something is found

while((!flag)&&(!end))

{

//Output to the screen when ready for a new segment.

printf("Rank %i, found = %i\n",myrank,found);

//Alert the master process

MPI_Isend(&found,1,MPI_INT,0,finished,MPI_COMM_WORLD,&ready);

Recv(&Mine);

reduce(&Mine.start,root,N); //Re-calculates the third coefficient

index = 0;

lineStart = 0;

//Step through the quadratic forms until a something is found.

while(((!isSquare(Mine.start.Q0,firstBack))||

(!testF(Mine.start,back,Mine.halfStart,index,firstBack,root,N,&test)))&&(!end))

{

if(test)

printf("Rank %i, found a factor\n",myrank);

cFracStep(&Mine.start,root);

cFracStep(&Mine.start,root);

if((!mpz_cmp_ui(Mine.start.Q0,1))||(!mpz_cmp_ui(Mine.start.Q1,1)))

{

end = 1;

found = -1;

printf("Start found");

}

if((!mpz_cmp(Mine.start.Q0,Mine.end.Q0))&&(!mpz_cmp(Mine.start.P,Mine.end.P)))

end = 1;

MPI_Test(&last,&flag,&status);

if(flag)

{

printf("Rank %i: STOP recieved.\n",myrank);

if(done==1)

end = 1;
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}

index = index+1;

}

if(test)

{

found = 1;

end = 1;

}

MPI_Test(&last,&flag,&status);

}

//Output status when done.

printf("found = %i\n",found);

MPI_Isend(&found,1,MPI_INT,0,finished,MPI_COMM_WORLD,&ready);

mpz_clear(Mine.start.Q0); mpz_clear(Mine.start.P);

mpz_clear(Mine.start.Q1); mpz_clear(Mine.start.b);

mpz_clear(Mine.end.Q0); mpz_clear(Mine.end.P); mpz_clear(Mine.end.Q1);

mpz_clear(Mine.end.b);

mpz_clear(Mine.halfStart.Q0); mpz_clear(Mine.halfStart.P);

mpz_clear(Mine.halfStart.Q1); mpz_clear(Mine.halfStart.b);

printf("Rank %d,done = %d\n",myrank,done);

}

printf("Rank = %d: Done\n",myrank);

MPI_Finalize();

for(i=0; i<segSize; i++)

{

mpz_clear(back[i].Q0);

mpz_clear(back[i].P);

mpz_clear(back[i].Q1);

mpz_clear(back[i].b);

}

mpz_clear(Start.Q0);

mpz_clear(Start.P);

mpz_clear(Start.Q1);

mpz_clear(Start.b);
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mpz_clear(N);

mpz_clear(root);

return 0;

}

Include file for using GMP with MPI

This file includes the basic operations required to send dynamic integers between two

processors. The two functions used by other programs are Send() and Recv() which send

and recieve segments to be searched.

//gmpmpi.h

struct segment {

struct form start;

struct form end;

struct form halfStart; //The quadratic form whose square is start.

};

void Send(struct segment A, int dest);

void Recv(struct segment *A);

//Converts the segment to an array of strings.

//Note that only the first two components of eqch quadratic form are sent.

void form_type(struct segment A, char *A_str[6], int lengths[6])

{

int i;

lengths[0] = 1+mpz_sizeinbase(A.start.Q0,36);

lengths[1] = 1+mpz_sizeinbase(A.start.P,36);

lengths[2] = 1+mpz_sizeinbase(A.end.Q0,36);

lengths[3] = 1+mpz_sizeinbase(A.end.P,36);

lengths[4] = 1+mpz_sizeinbase(A.halfStart.Q0,36);

lengths[5] = 1+mpz_sizeinbase(A.halfStart.P,36);

for(i = 0; i<6; i= i+1)
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{

A_str[i] = malloc(lengths[i]*sizeof(char));

}

mpz_get_str(A_str[0],36,A.start.Q0);

mpz_get_str(A_str[1],36,A.start.P);

mpz_get_str(A_str[2],36,A.end.Q0);

mpz_get_str(A_str[3],36,A.end.P);

mpz_get_str(A_str[4],36,A.halfStart.Q0);

mpz_get_str(A_str[5],36,A.halfStart.P);

}

//Allocates memory on the recieving processor for the incoming segment.

void reform_type(char *A_str[6],int lengths[6])

{

int i;

for(i = 0; i<6; i++)

A_str[i] = malloc(lengths[i]*sizeof(char));

}

//Converts the character string array back into a segment

void unpack(struct segment *A, char *A_str[6])

{

mpz_set_str((*A).start.Q0,A_str[0],36);

mpz_set_str((*A).start.P,A_str[1],36);

mpz_set_str((*A).end.Q0,A_str[2],36);

mpz_set_str((*A).end.P,A_str[3],36);

mpz_set_str((*A).halfStart.Q0,A_str[4],36);

mpz_set_str((*A).halfStart.P,A_str[5],36);

}

//Sends a segment

void Send(struct segment A, int dest)

{

char *As[6];

int lengths[6];

const int tags[6] = {1,2,3,4,5,6};

int i;
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form_type(A,As,lengths);

printf("Sending lengths: %d, %d, %d\n",lengths[0],lengths[1],lengths[2]);

MPI_Send(&lengths[0],6,MPI_INT,dest,0,MPI_COMM_WORLD);

for(i = 0; i<6; i++)

MPI_Send(As[i],lengths[i],MPI_CHAR,dest,tags[i],MPI_COMM_WORLD);

for(i = 0; i<6; i++)

free(As[i]);

}

//Recieves a segment

void Recv(struct segment *A)

{

char *As[6];

int lengths[6];

const int tags[6] = {1,2,3,4,5,6};

int i;

MPI_Status halt;

MPI_Recv(&lengths[0],6,MPI_INT,0,0,MPI_COMM_WORLD,&halt);

printf("Recving lengths: %d, %d, %d\n",lengths[0],lengths[1],lengths[2]);

reform_type(As,lengths);

for(i = 0; i<6; i++)

MPI_Recv(As[i],lengths[i],MPI_CHAR,0,tags[i],MPI_COMM_WORLD,&halt);

unpack(A,As);

printf("P = ");

printf(As[1]);

printf(" = ");

mpz_out_str(stdout,10,(*A).start.P);

printf("\n");

for(i=0; i<6; i++)

free(As[i]);

}
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